Характеристика организации беспроводной связи между компьютерами. Понятие и виды беспроводных сетей. Плюсы проводной сети

Передача информации между компьютерами.

Проводная и беспроводная связь.

Передача информации - физический процесс, посредством которого осуществляется перемещение информации в пространстве. Записали информацию на диск и перенесли в другую комнату. Данный процесс характеризуется наличием следующих компонентов:

  • Источник информации.
  • Приёмник информации (получатель сигнала).
  • Носитель информации.
  • Среда передачи.

Передача информации - заблаговременно организованное техническое мероприятие, результатом которого становится воспроизведение информации, имеющейся в одном месте, условно называемом "источником информации", в другом месте, условно называемом "приёмником информации". Данное мероприятие предполагает предсказуемый срок получения указанного результата.

Для осуществления передачи информации необходимо наличие, с одной стороны, так называемого "запоминающего устройства", или " носителя " , обладающего возможностью перемещения в пространстве и времени между "источником " и "приёмником ". С другой стороны, необходимы заранее известные "источнику" и "приемнику" правила и способы нанесения и снятия информации с "носителя". С третьей стороны, "носитель" должен продолжать существовать как таковой к моменту прибытия в пункт назначения. (к моменту окончания снятия с него информации "приёмником")

В качестве "носителей" на современном этапе развития техники используются как вещественно-предметные, так и волново- полевые объекты физической природы. Носителями могут быть при определённых условиях и сами передаваемые "информационные" "объекты" (виртуальные носители).

Передача информации в повседневной практике осуществляется по описанной схеме как "вручную", так и с помощью различных автоматов. Современная вычислительная машина, или попросту говоря компьютер, способен открыть все свои безграничные возможности только в том случае, если он подключен к локальной компьютерной сети, которая связывает каналом обмена данными все компьютеры той или иной организации.

Проводные локальные сети являются фундаментальной основой любой компьютерной сети и способны превратить компьютер в чрезвычайно гибкий и универсальный инструмент, без которого попросту невозможен никакой современный бизнес.

Локальная сеть позволяет осуществлять сверхбыстрый обмен данными между вычислительными машинами, реализовать работу с любыми базами данных , осуществлять коллективный выход во всемирную сеть Интернет, работать с электронной почтой, проводить распечатку информации на бумажный носитель, используя при этом всего один единый принт-сервер и многое другое, что оптимизирует рабочий процесс, а значит и увеличивает эффективность бизнеса .

Высокие технологии и технический прогресс современности позволил дополнить локальные компьютерные сети «беспроводными» технологиями. Другими словами, беспроводные сети , функционирующие на обмене радиоволнами определенной фиксированной частоты способны стать прекрасным дополняющим элементом к любым проводным локальным сетям. Их основная особенность заключается в том, что в тех местах, где архитектурные особенности того или иного помещения или здания, где находится фирма или организация, не предоставляют возможности прокладки кабеля локальной сети, с задачей помогут справиться радиоволны.

Однако беспроводные сети являются лишь дополнительным элементом локальной компьютерной сети, где основную работу выполняют магистральные кабели обмена данных. Основной причиной этого является феноменальная надежность проводных локальных сетей, которые используют все современные фирмы и организации, вне зависимости от их размеров и области занятости.

Сетевая топология

Сетевая тополо́гия (от греч. τόπος , - место) - способ описания конфигурации сети, схема расположения и соединения сетевых устройств.

Сетевая топология может быть:

  • физической - описывает реальное расположение и связи между узлами сети.
  • логической - описывает хождение сигнала в рамках физической топологии.
  • информационной - описывает направление потоков информации, передаваемых по сети.
  • управления обменом - это принцип передачи права на пользование сетью.

Существует множество способов соединения сетевых устройств. Выделяют следующие базовых топологии:

  • Шина
  • Линия
  • Кольцо
  • Звезда
    • Полносвязная
  • Дерево

И дополнительные (производные):

  • Двойное кольцо
  • Ячеистая топология
  • Решётка
  • Fat Tree

Дополнительные способы являются комбинациями базовых. В общем случае такие топологии называются смешанными или гибридными, но некоторые из них имеют собственные названия, например «Дерево».

Шина (топология компьютерной сети)

Топология типа общая ши́на , представляет собой общий кабель (называемый шина или магистраль), к которому подсоединены все рабочие станции. На концах кабеля находятся терминаторы, для предотвращения отражения сигнала.

Работа в сети

Топология общая шина предполагает использование одного кабеля, к которому подключаются все компьютеры сети. Отправляемое какой-либо рабочей станцией сообщение распространяется на все компьютеры сети. Каждая машина проверяет, кому адресовано сообщение, - если сообщение адресовано ей, то обрабатывает его. Принимаются специальные меры для того, чтобы при работе с общим кабелем компьютеры не мешали друг другу передавать и принимать данные. Для того, чтобы исключить одновременную посылку данных, применяется либо «несущий» сигнал, либо один из компьютеров является главным и «даёт слово» «МАРКЕР» остальным компьютерам такой сети.

Шина самой своей структурой допускает идентичность сетевого оборудования компьютеров, а также равноправие всех абонентов. При таком соединении компьютеры могут передавать информацию только по очереди, - последовательно - потому что линия связи единственная. В противном случае пакеты передаваемой информации будут искажаться в результате взаимного наложения (т. е. произойдет конфликт, коллизия). Таким образом, в шине реализуется режим полудуплексного (half duplex) обмена (в обоих направлениях, но по очереди, а не одновременно (т. е. последовательно, а не параллельно )).

В топологии «шина» отсутствует центральный абонент, через которого передается вся информация, что увеличивает надежность «шины». (При отказе любого центра перестает функционировать вся управляемая им система). Добавление новых абонентов в «шину» достаточно простое и обычно возможно даже во время работы сети. В большинстве случаев при использовании «шины» нужно минимальное количество соединительного кабеля по сравнению с другой топологией. Правда, нужно учесть, что к каждому компьютеру (кроме двух крайних) подходят два кабеля, что не всегда удобно.

«Шине» не страшны отказы отдельных компьютеров, потому что все другие компьютеры сети продолжат нормально обмениваться информацией. Но так как используется только один общий кабель, - в случае его обрыва нарушается работа всей сети. Тем не менее может показаться, что «шине» обрыв кабеля не страшен, поскольку в этом случае остаются две полностью работоспособные «шины». Однако из-за особенности распространения электрических сигналов по длинным линиям связи необходимо предусматривать включение на концах шины специальных устройств - терминаторов.

Без включения терминаторов в «шину» сигнал отражается от конца линии и искажается так, что связь по сети становится невозможной. Таким образом, при разрыве или повреждении кабеля нарушается согласование линии связи, и прекращается обмен даже между теми компьютерами, которые остались физически соединенными между собой. Короткое замыкание в любой точке кабеля «шины» выводит из строя всю сеть. Хотя в целом надежность «шины» все же сравнительно высока, так как выход из строя отдельных компьютеров не нарушит работоспособность сети в целом, поиск, тем не менее, неисправности в «шине» затруднен. В частности: любой отказ сетевого оборудования в «шине» очень трудно локализовать, потому что все сетевые адаптеры включены параллельно, и понять, который из них вышел из строя, не так-то просто.

При построении больших сетей возникает проблема ограничения на длину линии связи между узлами, - в таком случае сеть разбивают на сегменты. Сегменты соединяются различными устройствами - повторителями, концентраторами или хабами. Например, технология Ethernet позволяет использовать кабель длиной не более 185 метров.

Достоинства

  • Небольшое время установки сети;
  • Дешевизна (требуется кабель меньшей длины и меньше сетевых устройств);
  • Простота настройки;
  • Выход из строя одной рабочей станции не отражается на работе всей сети.

Недостатки

  • Неполадки в сети, такие как обрыв кабеля или выход из строя терминатора, полностью блокируют работу всей сети;
  • Затрудненность выявления неисправностей;
  • С добавлением новых рабочих станций падает общая производительность сети.

Шинная топология представляет собой топологию, в которой все устройства локальной сети подключаются к линейной сетевой среде передачи данных. Такую линейную среду часто называют каналом, шиной или трассой. Каждое устройство (например, рабочая станция или сервер) независимо подключается к общему кабелю-шине с помощью специального разъема. Шинный кабель должен иметь на конце согласующий резистор, или терминатор, который поглощает электрический сигнал, не давая ему отражаться и двигаться в обратном направлении по шине.

Преимущества и недостатки шинной топологии

Типичная шинная топология имеет простую структуру кабельной системы с короткими отрезками кабелей. Поэтому по сравнению с другими топологиями стоимость ее реализации невелика. Однако низкая стоимость реализации компенсируется высокой стоимостью управления. Фактически, самым большим недостатком шинной топологии является то, что диагностика ошибок и изолирование сетевых проблем могут быть довольно сложными, поскольку здесь имеются несколько точек концентрации. Так как среда передачи данных не проходит через узлы, подключенные к сети, потеря работоспособности одного из устройств никак не сказывается на других устройствах. Хотя использование всего лишь одного кабеля может рассматриваться как достоинство шинной топологии, однако оно компенсируется тем фактом, что кабель, используемый в этом типе топологии, может стать критической точкой отказа. Другими словами, если шина обрывается, то ни одно из подключенных к ней устройств не сможет передавать сигналы.

Примеры

Примерами использования топологии общая шина является сеть 10BASE5 (соединение ПК толстым коаксиальным кабелем) и 10BASE2 (соединение ПК тонким коаксиальным кабелем). Сегмент компьютерной сети, использующей коаксиальный кабель в качестве носителя и подключенных к этому кабелю рабочих станций. В этом случае шиной будет являться отрезок коаксиального кабеля, к которому подключены компьютеры.

Кольцо (топология компьютерной сети)

Кольцо́ - это топология, в которой каждый компьютер соединен линиями связи только с двумя другими: от одного он только получает информацию, а другому только передает. На каждой линии связи, как и в случае звезды, работает только один передатчик и один приемник. Это позволяет отказаться от применения внешних терминаторов.

Работа в сети кольца заключается в том, что каждый компьютер ретранслирует (возобновляет) сигнал, то есть выступает в роли повторителя, потому затухание сигнала во всем кольце не имеет никакого значения, важно только затухание между соседними компьютерами кольца. Четко выделенного центра в этом случае нет, все компьютеры могут быть одинаковыми. Однако достаточно часто в кольце выделяется специальный абонент, который управляет обменом или контролирует обмен. Понятно, что наличие такого управляющего абонента снижает надежность сети, потому что выход его из строя сразу же парализует весь обмен.

Компьютеры в кольце не являются полностью равноправными (в отличие, например, от шинной топологии). Одни из них обязательно получают информацию от компьютера, который ведет передачу в этот момент, раньше, а другие - позже. Именно на этой особенности топологии и строятся методы управления обменом по сети, специально рассчитанные на «кольцо». В этих методах право на следующую передачу (или, как еще говорят, на захват сети) переходит последовательно к следующему по кругу компьютеру.

Подключение новых абонентов в «кольцо» обычно совсем безболезненно, хотя и требует обязательной остановки работы всей сети на время подключения. Как и в случае топологии « шина», максимальное количество абонентов в кольце может быть достаточно большое (1000 и больше). Кольцевая топология обычно является самой стойкой к перегрузкам, она обеспечивает уверенную работу с самыми большими потоками переданной по сети информации, потому что в ней, как правило, нет конфликтов (в отличие от шины), а также отсутствует центральный абонент (в отличие от звезды).

В кольце, в отличие от других топологий (звезда, шина), не используется конкурентный метод посылки данных, компьютер в сети получает данные от стоящего предыдущим в списке адресатов и перенаправляет их далее, если они адресованы не ему. Список адресатов генерируется компьютером, являющимся генератором маркера. Сетевой модуль генерирует маркерный сигнал (обычно порядка 2-10 байт во избежание затухания) и передает его следующей системе (иногда по возрастанию MAC-адреса). Следующая система, приняв сигнал, не анализирует его, а просто передает дальше. Это так называемый нулевой цикл.

Последующий алгоритм работы таков - пакет данных GRE, передаваемый отправителем адресату начинает следовать по пути, проложенному маркером. Пакет передаётся до тех пор, пока не доберётся до получателя.

Сравнение с другими топологиями

Достоинства

  • Простота установки;
  • Практически полное отсутствие дополнительного оборудования;
  • Возможность устойчивой работы без существенного падения скорости передачи данных при интенсивной загрузке сети, поскольку использование маркера исключает возможность возникновения коллизий.

Недостатки

  • Выход из строя одной рабочей станции, и другие неполадки (обрыв кабеля), отражаются на работоспособности всей сети;
  • Сложность конфигурирования и настройки;
  • Сложность поиска неисправностей.
  • Необходимость иметь две сетевые платы, на каждой рабочей станции.

Применение

Наиболее широкое применение получила в волоконно-оптических сетях. Используется в стандартах FDDI, Token ring.

Звезда (топология компьютерной сети)

Звезда́ - базовая топология компьютерной сети, в которой все компьютеры сети присоединены к центральному узлу (обычно коммутатор), образуя физический сегмент сети . Подобный сегмент сети может функционировать как отдельно, так и в составе сложной сетевой топологии (как правило, «дерево»). Весь обмен информацией идет исключительно через центральный компьютер, на который таким способом возлагается очень большая нагрузка, поэтому ничем другим, кроме сети, он заниматься не может. Как правило, именно центральный компьютер является самым мощным, и именно на него возлагаются все функции по управлению обменом. Никакие конфликты в сети с топологией звезда в принципе невозможны, потому что управление полностью централизовано.

Работа в сети

Рабочая станция, с которой необходимо передать данные, отсылает их на концентратор. В определённый момент времени только одна машина в сети может пересылать данные, если на концентратор одновременно приходят два пакета, обе посылки оказываются не принятыми и отправителям нужно будет подождать случайный промежуток времени, чтобы возобновить передачу данных. Этот недостаток отсутствует на сетевом устройстве более высокого уровня - коммутаторе, который, в отличие от концентратора, подающего пакет на все порты, подает лишь на определенный порт - получателю. Одновременно может быть передано несколько пакетов. Сколько - зависит от коммутатора.

Активная звезда

В центре сети содержится компьютер, который выступает в роли сервера.

Пассивная звезда

В центре сети с данной топологией содержится не компьютер, а концентратор, или коммутатор, что выполняет ту же функцию, что и повторитель. Он возобновляет сигналы, которые поступают, и пересылает их в другие линии связи. Все пользователи в сети равноправны.

Сравнение с другими типами сетей

Достоинства

  • выход из строя одной рабочей станции не отражается на работе всей сети в целом;
  • хорошая масштабируемость сети;
  • лёгкий поиск неисправностей и обрывов в сети;
  • высокая производительность сети (при условии правильного проектирования);
  • гибкие возможности администрирования.

Недостатки

  • выход из строя центрального концентратора обернётся неработоспособностью сети (или сегмента сети) в целом;
  • для прокладки сети зачастую требуется больше кабеля, чем для большинства других топологий;
  • конечное число рабочих станций в сети (или сегменте сети) ограничено количеством портов в центральном концентраторе.

Применение

Одна из наиболее распространённых топологий, поскольку проста в обслуживании. В основном используется в сетях, где носителем выступает кабель витая пара UTP категории 3 или 5.

Дерево (топология компьютерной сети)

Топология типа общая Древовидная топология , представляет собой топологию Звезда . Если представить как растут ветки у дерева то мы получим топологию "Звезда ", изначально топология называлась именно "древовидная", с течением времени начали в скобках указывать - (звезда). В современной топологии указывается только "звезда". Долгое время базовой топологией считалась именно древовидная, но ее постепенно начали заменять. Выбор звезда или дерево зависит только от личных предпочтений. Различия только в том что в "древовидной" топологии, как правило, схема более строгая и иерархичная в ней легче отслеживать сетевые связи, и эта схема часто использует элементы "шинной" архитектуры. Сеть fat tree (утолщенное дерево) - топология компьютерной сети, является дешевой и эффективной для суперкомпьютеров. В отличие от классической топологии дерево, в которой все связи между узлами одинаковы, связи в утолщенном дереве становятся более широкими (толстыми, производительными по пропускной способности) с каждым уровнем по мере приближения к корню дерева.

Полносвязная топология

Полносвязная топология - топология компьютерной сети , в которой каждая рабочая станция подключена ко всем остальным. Этот вариант является громоздким и неэффективным, несмотря на свою логическую простоту. Для каждой пары должна быть выделена независимая линия, каждый компьютер должен иметь столько коммуникационных портов сколько компьютеров в сети. По этим причинам сеть может иметь только сравнительно небольшие конечные размеры. Чаще всего эта топология используется в многомашинных комплексах или глобальных сетях при малом количестве рабочих станций.

Недостатки

  • Сложное расширение сети (при добавлении одного узла необходимо соединить его со всеми остальными).
  • Огромное количество соединений при большом количестве узлов

Беспроводные компьютерные сети - это технология, позволяющая создавать вычислительные сети, полностью соответствующие стандартам для обычных проводных сетей без использования кабельной проводки. В качестве носителя информации в таких сетях выступают радиоволны СВЧ-диапазона.

Применение

Существует два основных направления применения беспроводных компьютерных сетей:

  • Работа в замкнутом объеме (офис, выставочный зал и т. п.);
  • Соединение удаленных локальных сетей (или удаленных сегментов локальной сети).

Для организации беспроводной сети в замкнутом пространстве применяются передатчики с всенаправленными антеннами. Стандарт I EEE 802.1 1 определяет два режима работы сети - Ad-hoc и клиент-сервер. Режим Ad-hoc (иначе называемый «точка-точка») - это простая сеть, в которой связь между станциями (клиентами) устанавливается напрямую, без использования специальной точки доступа. В режиме клиент-сервер беспроводная сеть состоит, как минимум, из одной точки доступа, подключенной к проводной сети, и некоторого набора беспроводных клиентских станций. Поскольку в большинстве сетей необходимо обеспечить доступ к файловым серверам, принтерам и другим устройствам, подключенным к проводной локальной сети, чаще всего используется режим клиент-сервер. Без подключения дополнительной антенны устойчивая связь для оборудования IEEE 802.11b достигается в среднем на следующих расстояниях: открытое пространство - 500 м, комната, разделенная перегородками из неметаллического материала - 100 м, офис из нескольких комнат - 30 м. Следует иметь в виду, что через стены с большим содержанием металлической арматуры (в железобетонных зданиях таковыми являются несущие стены) радиоволны диапазона 2,4 ГГц иногда могут вообще не проходить, поэтому в комнатах, разделенных подобной стеной, придется ставить свои точки доступа.

Для соединения удаленных локальных сетей (или удаленных сегментов локальной сети) используется оборудование с направленными антеннами, что позволяет увеличить дальность связи до 20 км (а при использовании специальных усилителей и большой высоте размещения антенн - до 50 км). Причем в качестве подобного оборудования могут выступать и устройства Wi-Fi, нужно лишь добавить к ним специальные антенны (конечно, если это допускается конструкцией). Комплексы для объединения локальных сетей по топологии делятся на «точку-точку» и «звезду». При топологии «точка-точка» организуется радиомост между двумя удаленными сегментами сети. При топологии «звезда» одна из станций является центральной и взаимодействует с другими удаленными станциями. При этом центральная станция имеет всенаправленную антенну, а другие удаленные станции - однонаправленные антенны. Применение всенаправленной антенны в центральной станции ограничивает дальность связи дистанцией примерно 7 км. Поэтому, если требуется соединить между собой сегменты локальной сети, удаленные друг от друга на расстояние более 7 км, приходится соединять их по принципу «точка-точка». При этом организуется беспроводная сеть с кольцевой или иной, более сложной топологией.

Мощность, излучаемая передатчиком точки доступа или же клиентской станции, не превышает 0,1 Вт, но многие производители беспроводных точек доступа ограничивают мощность лишь программным путем, и достаточно просто поднять мощность до 0,2-0,5 Вт. Для сравнения - мощность, излучаемая мобильным телефоном, на порядок больше (в момент звонка - до 2 Вт). Поскольку, в отличие от мобильного телефона, элементы сети расположены далеко от головы, в целом можно считать, что беспроводные компьютерные сети более безопасны с точки зрения здоровья, чем мобильные телефоны.

Если беспроводная сеть используется для объединения сегментов локальной сети, удаленных на большие расстояния, антенны, как правило, размещаются за пределами помещения и на большой высоте.

Еще одно преимущество беспроводной сети связано с тем, что физические характеристики сети делают ее локализованной. В результате дальность действия сети ограничивается лишь определенной зоной покрытия. Для подслушивания потенциальный злоумышленник должен будет находиться в непосредственной физической близости, а значит, привлекать к себе внимание. В этом преимущество беспроводных сетей с точки зрения безопасности. Беспроводные сети имеют также уникальную особенность: их можно отключить или модифицировать их параметры, если безопасность зоны вызывает сомнения.

Несанкционированное вторжение в сеть. Для вторжения в сеть необходимо к ней подключиться. В случае проводной сети требуется электрическое соединение, беспроводной - достаточно оказаться в зоне радиовидимости сети с оборудованием того же типа, на котором построена сеть.

В беспроводных сетях для снижения вероятности несанкционированного доступа предусмотрен контроль доступа по MAC-адресам устройств и тот же самый WEP. Поскольку контроль доступа реализуется с помощью точки доступа, он возможен только при инфраструктурной топологии сети. Механизм контроля подразумевает заблаговременное составление таблицы MAC-адресов разрешенных пользователей в точке доступа и обеспечивает передачу только между зарегистрированными беспроводными адаптерами. При топологии «ad-hoc» (каждый с каждым) контроль доступа на уровне радиосети не предусмотрен.

Для проникновения в беспроводную сеть злоумышленник должен:

  • Иметь оборудование для беспроводных сетей, совместимое с используемым в сети;
  • При использовании в оборудовании FHSS нестандартных последовательностей скачков частоты узнать их;
  • Знать идентификатор сети, закрывающий инфраструктуру и единый для всей логической сети (SSID);
  • Знать, на какой из 14 возможных частот работает сеть, или включить режим автосканирования;
  • Быть занесенным в таблицу разрешенных MAC-адресов в точке доступа при инфраструктурной топологии сети;
  • Знать 40-разрядный ключ шифра WEP в случае, если в беспроводной сети ведется шифрованная передача.

Решить все это практически невозможно, поэтому вероятность несанкционированного вхождения в беспроводную сеть, в которой приняты предусмотренные стандартом меры безопасности, можно считать очень низкой.

Radio Ethernet

Беспроводная связь, или связь по радиоканалу, сегодня используется и для построения магистралей (радиорелейные линии), и для создания локальных сетей, и для подключения удаленных абонентов к сетям и магистралям разного типа. Весьма динамично развивается в последние годы стандарт беспроводной связи Radio Ethernet. Изначально он предназначался для построения локальных беспроводных сетей, но сегодня все активнее используется для подключения удаленных абонентов к магистралям. Radio Ethernet сейчас обеспечивает пропускную способность до 54 Мбит/с и позволяет создавать защищенные беспроводные каналы для передачи мультимедийной информации.

Wi-Fi

Wi-Fi - торговая марка Wi-Fi Alliance для беспроводных сетей на базе стандарта IEEE 802.11. Под аббревиатурой Wi-Fi (от английского словосочетания Wireless Fidelity, которое можно дословно перевести как «высокая точность беспроводной передачи данных») в настоящее время развивается целое семейство стандартов передачи цифровых потоков данных по радиоканалам.

Wi-Fi был создан в 1991 году в Ньивегейн, Нидерланды. Термин «Wi-Fi» изначально был придуман как игра слов для привлечения внимания потребителя «намёком» на Hi-Fi (англ. High Fidelity - высокая точность). Вначале скорость передачи данных была от 1 до 2 Мбит/с. 29 июля 2011 года IEEE (Институт инженеров по электротехнике и электронике) выпустил официальную версию стандарта IEEE 802.22. Это есть Super Wi-Fi. Системы и устройства, поддерживающие этот стандарт, позволят передавать данные на скорости до 22 Мб/с в радиусе 100 км от ближайшего передатчика.

Принцип работы. Обычно схема Wi-Fi сети содержит не менее одной точки доступа и не менее одного клиента. Также возможно подключение двух клиентов в режиме точка-точка, когда точка доступа не используется, а клиенты соединяются посредством сетевых адаптеров «напрямую». Точка доступа передаёт свой идентификатор сети (SSID (англ. )) с помощью специальных сигнальных пакетов на скорости 0,1 Мбит/с каждые 100 мс. Поэтому 0,1 Мбит/с - наименьшая скорость передачи данных для Wi-Fi. Зная SSID сети, клиент может выяснить, возможно ли подключение к данной точке доступа.

По способу объединения точек доступа в единую систему можно выделить:

  • Автономные точки доступа (называются также самостоятельные, децентрализованные, умные)
  • Точки доступа, работающие под управлением контроллера (называются также «легковесные», централизованные)
  • Бесконтроллерные, но не автономные (управляемые без контроллера)

По способу организации и управления радиоканалами можно выделить беспроводные локальные сети:

  • Со статическими настройками радиоканалов
  • С динамическими (адаптивными) настройками радиоканалов
  • Со «слоистой» или многослойной структурой радиоканалов

Преимущества Wi-Fi

  • Позволяет развернуть сеть без прокладки кабеля, что может уменьшить стоимость развёртывания и/или расширения сети. Места, где нельзя проложить кабель, например, вне помещений и в зданиях, имеющих историческую ценность, могут обслуживаться беспроводными сетями.
  • Позволяет иметь доступ к сети мобильным устройствам.
  • Коммерческий доступ к сервисам на основе Wi-Fi предоставляется в таких местах, как Интернет-кафе, аэропорты и кафе по всему миру (обычно эти места называют Wi-Fi-кафе).
  • Мобильность. Вы больше не привязаны к одному месту и можете пользоваться Интернетом в комфортной для вас обстановке.
  • В пределах Wi-Fi зоны в сеть Интернет могут выходить несколько пользователей с компьютеров, ноутбуков, телефонов и т. д.
  • Излучение от Wi-Fi устройств в момент передачи данных на два порядка (в 100 раз) меньше, чем у сотового телефона.

Недостатки Wi-Fi

  • Bluetooth, и др, и даже микроволновые печи, что ухудшает электромагнитную совместимость.
    • Реальная скорость передачи данных в Wi-Fi сети всегда ниже максимальной скорости, заявляемой производителями Wi-Fi оборудования. Реальная скорость зависит от многих факторов: наличия между устройствами физических преград (мебель, стены), наличия помех от других беспроводных устройств или электронной аппаратуры, расположения устройств относительно друг друга и т. п.
    • Частотный диапазон и эксплуатационные ограничения в различных странах неодинаковы. Во многих европейских странах разрешены два дополнительных канала, которые запрещены в США; В Японии есть ещё один канал в верхней части диапазона, а другие страны, например Испания, запрещают использование низкочастотных каналов. Более того, некоторые страны, например Россия, требуют регистрации всех сетей Wi-Fi, работающих вне помещений, или требуют регистрации Wi-Fi-оператора.
    • Как было упомянуто выше - в России точки беспроводного доступа, а также адаптеры Wi-Fi с ЭИИМ, превышающей 100 мВт (20 дБм), подлежат обязательной регистрации.
    • Стандарт шифрования WEP может быть относительно легко взломан даже при правильной конфигурации (из-за слабой стойкости алгоритма). Новые устройства поддерживают более совершенный протокол шифрования данных

Wi-Fi и телефоны сотовой связи

Некоторые считают, что Wi-Fi и подобные ему технологии со временем могут заменить сотовые сети, такие как GSM. Препятствиями для такого развития событий в ближайшем будущем являются отсутствие роуминга и возможностей аутентификации, ограниченность частотного диапазона и сильно ограниченный радиус действия Wi-Fi. Более правильным выглядит сравнение Wi-Fi с другими стандартами сотовых сетей.

Тем не менее, Wi-Fi пригоден для использования в среде SOHO. Первые образцы оборудования появились уже в начале 2000-х, однако на рынок они вышли только в 2005 году. Тогда компании представили на рынок VoIP Wi-Fi-телефоны по «разумным» ценам. Когда звонки с помощью VoIP стали очень дешёвыми, а зачастую вообще бесплатными, провайдеры, способные предоставлять услуги VoIP, получили возможность открыть новый рынок - услуг VoIP.

В настоящий момент непосредственное сравнение Wi-Fi и сотовых сетей нецелесообразно. Телефоны, использующие только Wi-Fi, имеют очень ограниченный радиус действия, поэтому развёртывание таких сетей обходится очень дорого. Тем не менее, развёртывание таких сетей может быть наилучшим решением для локального использования, например, в корпоративных сетях.

WiMAX (англ. W orldwideI nteroperability for M icrowave A ccess )- телекоммуникационная технология, разработанная с целью предоставления универсальнойбеспроводной связина больших расстояниях для широкого спектра устройств (отрабочих станцийипортативных компьютеров домобильных телефонов). Основана на стандарте IEEE 802.16, который также называютWireless MAN(WiMAX следует считать жаргонным названием, так как это не технология, а название форума, на котором Wireless MAN и был согласован). Максимальная скорость - до 1Гбит/секна ячейку.

Область использования

WiMAX подходит для решения следующих задач:

  • Соединения точек доступа Wi-Fiдруг с другом и другими сегментами Интернета.
  • Обеспечения беспроводного широкополосного доступа как альтернативы
  • Предоставления высокоскоростных сервисов передачи данных и телекоммуникационных услуг.
  • Создания точек доступа, не привязанных к географическому положению.
  • Создания систем удалённого мониторинга (monitoring системы), как это имеет место в системе

WiMAX позволяет осуществлять доступ в Интернетна высоких скоростях, с гораздо большим покрытием, чем уWi-Fi-сетей. Это позволяет использовать технологию в качестве «магистральных каналов», продолжением которых выступают традиционные DSL- и выделенные линии, а такжелокальные сети. В результате подобный подход позволяет создавать масштабируемые высокоскоростные сети в рамках городов.

Фиксированный и мобильный вариант WiMAX

Набор преимуществ присущ всему семейству WiMAX, однако его версии существенно отличаются друг от друга. Разработчики стандарта искали оптимальные решения как для фиксированного, так и для мобильного применения, но совместить все требования в рамках одного стандарта не удалось. Хотя ряд базовых требований совпадает, нацеленность технологий на разные рыночные ниши привела к созданию двух отдельных версий стандарта (вернее, их можно считать двумя разными стандартами). Каждая из спецификаций WiMAX определяет свои рабочие диапазоны частот, ширину полосы пропускания, мощность излучения, методы передачи и доступа, способы кодирования и модуляции сигнала, принципы повторного использования радиочастот и прочие показатели.

Основное различие двух технологий состоит в том, что фиксированный WiMAX позволяет обслуживать только «статичных» абонентов, а мобильный ориентирован на работу с пользователями, передвигающимися со скоростью до 150 км/ч. Мобильность означает наличие функций роуминга и «бесшовного» переключения между базовыми станциями при передвижении абонента (как происходит в сетях сотовой связи). В частном случае мобильный WiMAX может применяться и для обслуживания фиксированных пользователей.

Широкополосный доступ

Многие телекоммуникационные компании делают большие ставки на использование WiMAX для предоставления услуг высокоскоростной связи. И тому есть несколько причин.

Во-первых, технологии позволят экономически более эффективно (по сравнению с проводными технологиями) не только предоставлять доступ в сеть новым клиентам, но и расширять спектр услуг и охватывать новые труднодоступные территории.

Во-вторых, беспроводные технологии многим более просты в использовании, чем традиционные проводные каналы. WiMAX и Wi-Fi сети просты в развёртывании и по мере необходимости легко масштабируемы. Этот фактор оказывается очень полезным, когда необходимо развернуть большую сеть в кратчайшие сроки. К примеру, WiMAX был использован для того чтобы предоставить доступ в Сеть выжившим после цунами, произошедшего в декабре 2004 года в Индонезии (Aceh). Вся коммуникационная инфраструктура области была выведена из строя и требовалось оперативное восстановление услуг связи для всего региона.

В сумме все эти преимущества позволят снизить цены на предоставление услуг высокоскоростного доступа в Интернет как для бизнес структур, так и для частных лиц.

  • Wi-Fiэто система более короткого действия, обычно покрывающая десятки метров, которая использует нелицензированные диапазоны частот для обеспечения доступа к сети. ОбычноWi-Fi используется пользователями для доступа к их собственной локальной сети, которая может быть и не подключена к Интернету. Если WiMAX можно сравнить с мобильной связью, тоWi-Fi скорее похож на стационарный беспроводной телефон.

Проводная или беспроводная сеть? Плюсы, минусы и некоторые особенности

Современный офис невозможно представить себе без локальной сети и выхода в интернет. И речь идет не только о количественном, но и о качественном росте. Быстрая сеть позволяет организовать звуковую и видеосвязь между сотрудниками внутри офиса, а также с удаленными офисами - и в значительном количестве случаев отпадает нужда в телефонных каналах связи. Быстрая и надежная сеть позволяет организовать облачную инфраструктуру, где документы одновременно доступны для общей работы, что позволяет отказаться от локального хранения данных (пользуясь случаем, хочу напомнить читателям, что если они лично заняты в такой деятельности, где локальное хранение или другие экзотические штуки необходимы, то это не значит, что любой работник любого офиса также в них нуждается).

Наконец, быстрая и надежная сеть позволяет организовать работу при помощи веб-приложений, удаленного рабочего стола или других вариантов, когда приложения работают на серверной стороне. Это позволяет вообще отказаться от рабочего ПК и полностью организовать работу на тонких клиентах. Что, в свою очередь, позволяет отказаться от фиксированного рабочего места (работать можно с любого доступного компьютера/клиента в офисе, а также подключаться удаленно) и полностью реорганизовать работу ИТ-подразделения.

Скорость и надежность работы сети становится определяющей для работы всего предприятия. Соответственно, ошибки построения или неправильная организация офисной сети (включая организацию доступа в интернет) может дорого обойтись предприятию.

В очередной раз призываем читателей делиться своими историями организации современной сетевой инфраструктуры в офисе, особенностях и «подводных камнях» этого процесса. Ведь без обмена информацией невозможно получить целостную и достоверную картину.

Какие сети бывают

Физически сеть может быть проводной и беспроводной. У каждого из видов есть свои плюсы, минусы и особенности - как явные, так и скрытые. Несмотря на то, что «все все знают», зачастую какие-то особенности сети не учитывают. В результате сеть приходится либо дорабатывать, либо полностью переделывать.

Например, довольно простая ловушка (надеюсь, наши читатели на ней не споткнутся) - считать, что при выборе беспроводной сети проводные сегменты вообще не нужны.

Проводные сети: особенности, плюсы и минусы

Современные офисные проводные сети используют, как правило, витую пару и порты стандарта RJ-45. Работа проводных сетей описываются стандартами IEEE 802.3. На сегодняшний день используется два основных стандарта:

  • IEEE 802.3u с максимальной пропускной способностью 100 Мбит/с. Сегодня встречается только в бюджетных ноутбуках, старых компьютерах, включая сетевое оборудование, либо в устройствах, где высокая скорость не нужна;
  • IEEE 802.3ab с максимальной пропускной способностью 1000 Мбит/с на сегодняшний день является наиболее распространенным - гигабитные сетевые карты интегрируются в большинство материнских плат, на рынке есть широкий выбор сетевого оборудования, в том числе недорогого.

Существует так же стандарт IEEE 802.3an, позволяющий при определенных условиях достичь скорости в 10 Гбит/с при использовании обычной медной витой пары. Поддержку данного стандарта можно встретить в рабочих станциях и серверах, однако 10-Гигабитные коммутаторы стоят слишком дорого для SOHO, что тормозит замещение гигабитной сети 10-гигибатной. Есть промежуточные решения - гигабитные коммутаторы с 2-4 10-гигабитными SFP+ разъемами, что позволяет подключить сервер или другой сегмент сети по 10-гигабитному интерфейсу.

Плюсы проводной сети

Основное достоинство проводной сети - стабильность и надежность работы.

Высокая скорость и стабильность работы . Итак, возьмем распространенную конфигурацию сети со скоростью работы 1 Гбит/с. Эта скорость доступна для каждого клиента в сети и не делится между ними, плюс, это скорость в каждую сторону, т.е. суммарная пропускная способность может достигать 2000 Мбит/с (IEEE 802.3ab). Кроме того, есть поддержка больших пакетов (Jumbo Frame, это пакеты по 9кб и 16кб), что позволяет увеличить скорость при передаче больших объемов данных за счет сокращения передачи служебной информации, а также снизить нагрузку на процессор. Еще одним способом, повышающим пропускную способность сети, является агрегация каналов (IEEE 802.3ad), которая позволяет получить пропускную способность выше 1 Гбит/с. Наконец, витая пара эффективно работает при длине провода до 100 м без ухудшения стабильности и скорости соединения.

Оборудование . Гигабитный контроллер проводной сети сегодня интегрирован в любую продающуюся материнскую плату, т.е. по факту является бесплатным для пользователя. Кабели тоже относительно дешевы, плюс, их можно нарезать самостоятельно до нужной длины. Сетевое оборудование на рынке есть, что называется, на любой вкус и кошелек, всегда можно найти недорогие и при этом эффективные решения.

Безопасность . Один из существенных плюсов проводной сети - безопасность. В первую очередь физическая, т.к. чтобы подключиться к сети, злоумышленнику нужен физический доступ в помещение, к розетке.

Минусы проводной сети

Как и с любым кабелем, основной минус - необходимость прокладки кабелей до каждого рабочего места, а в дальнейшем - привязка работника к этому рабочему месту. Разводка, как правило, осуществляется при ремонте помещения, поэтому при любых изменениях в организации офиса сетевую инфраструктуру тоже, скорее всего, придется перекладывать. В результате поменять рассадку сотрудников, добавить рабочие места или сетевое оборудование (принтер, МФУ и пр.) - нетривиальная задача, для которой может потребоваться перепрокладка кабелей. Ну или разного рода «костыли».

Наконец, к одному проводу возможно подключение только одного устройства, а некоторые устройства (смартфоны, планшеты и т.д.) к проводной сети вообще не подключишь.

Беспроводные сети: особенности, плюсы и минусы


Развитие беспроводных сетей

Своим бурным развитием беспроводные сети в значительной степени обязаны компании Intel, которая в начале 2000-х годов сделала наличие беспроводного адаптера обязательным для ноутбуков, претендующих на популярный логотип Intel® Centrino™. С тех прошло много времени, а в развитие беспроводных сетей Wi-Fi было вложено огромное количество сил и средств.

На смену первому стандарту 802.11b (в США еще использовался стандарт 802.11a, но он работал на 5 ГГц, у нас в стране не работал т.к. тогда эта частота требовала лицензирования, и т.д.), обеспечивающему относительно небольшую скорость до 11 Мбит/сек, пришел более скоростной стандарт «g» (54 Мбит/с), а потом - «n» (150/300/600 Мбит/с). Здесь, кстати, можно отметить интересную вещь: производители настолько ждали новый стандарт, который предлагал более высокие скорости обмена данными, что стали выпускать устройства с его поддержкой еще до официального анонса, на черновой спецификации N-draft. Далее эта ситуация повторилась с новым стандартом «802.11ас». Иногда некоторые устройства на «черновых» спецификациях отказывались работать друг с другом (например, конкретный роутер и конкретный ноутбук), что могло стать неприятным сюрпризом.

Беспроводные сети сегодня: скорости, стандарты и пр.

Итак, на сегодня существует два основных стандарта беспроводного подключения Wi-Fi.

  • IEEE 802.11n с максимальной пропускной способностью от 150 до 600 Мбит/с при использовании четырех антенн. Стандарт предполагает беспроводные сети 2,4 ГГц и 5 ГГц;
  • IEEE 802.11ac с максимальной пропускной способностью до 6,77 Гбит/с при использовании восьми антенн. Данный стандарт предназначен только для 5 ГГц сетей.

Стандарт IEEE 802.11g с пропускной способностью 54Мбит/с сейчас можно встретить только в старых устройствах, но поддержка его в устройствах есть.

Сегодня на рынке присутствует широкий выбор разного оборудования, поддерживающего самые современные стандарты. Однако стоит отметить, что в беспроводных сетях куда больше разных вариантов (а значит и бардака). Обеспечиваемая скорость передачи данных зависит от очень многих параметров: поддерживаемых стандартов связи, количества антенн и работы MIMO, количества антенн и даже физического расположения в пространстве.

В общем, по формальным показателям скорости соединения беспроводные сети догоняют и даже обгоняют проводные. Но для них при этом существует очень много оговорок, из-за которых в реальности все не так радужно.

Плюсы беспроводных сетей

Основной плюс беспроводной сети - свобода. Сотрудник может подключить и полноценно работать с ресурсами компании из любого места, где ловится сигнал точки доступа, а это расстояние может достигать 30-50 м при хороших условиях связи. Соответственно, он не привязан к рабочему месту, может работать с разных устройств (как ПК, так и мобильных). Беспроводное подключение сильно поднимает удобство работы при большом количестве совещаний в отдельных комнатах, если сотрудники работают в рабочих группах, которые часто перетасовываются, и т.д.

Кстати, немного в сторону, но не стоит забывать, что беспроводная связь может работать не только как средство доступа к сети, но и для доступа к оборудованию - например, технологии Intel® Wireless Docking™ и Intel® WiDi™ (подробнее ) позволяют подключаться к настольной периферии (клавиатура, мышь и пр.) без проводов, а также проводить презентации на внешнем мониторе без подключения проводом.

В случае, если в офисе уже развернута беспроводная инфраструктура, то подключение дополнительного рабочего места не требует практически никаких дополнительных затрат - правда, пропускная способность точки доступа делится на всех клиентов, т.е. при большом обмене данных пропускная способность на клиента сильно упадет.

То же можно сказать и об устройствах - например, поставить новый принтер или МФУ с поддержкой Wi-Fi - дело пары минут. В результате, в некоторых случаях работа через Wi-Fi оказывается дешевле - особенно если количество сотрудников и устройств динамически меняется. Но нельзя забывать, что развертывание беспроводной инфраструктуры тоже стоит денег (и зачастую затраты больше, чем на проводную инфраструктуру), и провода тянуть (и делать коммутацию) все равно придется - хотя бы до точки доступа.

Минусы

Однако в случае с Wi-Fi большинство плюсов сопровождается минусами - либо, на худой конец, увесистыми оговорками.

Скорость и стабильность . Формально скорость соединения - то, что пишут на коробках - даже превосходит скорость проводного соединения. Однако реальная скорость работы в этом случае всегда будет гораздо ниже. Основные ограничения беспроводных сетей Wi-Fi включают в себя:

  • заявленная производителем точки доступа скорость подключения делится между всеми клиентами, то есть при большом количестве клиентов реальная скорость будет значительно ниже заявленной;
  • Высокая скорость достигается только при применении нескольких антенн. Но даже если у роутера их 8, то у мобильного устройства вряд ли будет больше двух антенн, соответственно, скорость будет ниже.
  • Скорость беспроводного соединения зависит от многих факторов: помех, расстояния до точки доступа, количества стен и других преград между точкой доступа и клиентом и т.д. Для диапазона 5 ГГц влияние этих факторов выше (т.е. дальность устойчивой работы будет меньше, а скорость при увеличении расстояния или через препятствие падает быстрее).
  • Беспроводные сети при работе мешают друг другу. В местах, где одновременно работает несколько сетей на одинаковом или близком канале передачи, скорость обмена данными в каждой из них будет падать.
  • В соответствии со стандартом IEEE 802.11, работа идет в полудуплексном режиме - это значит, что передача данных может идти только в одном направлении в конкретный момент времени, а при активном обмене данными на вход и выход скорость можно делить пополам.

Таким образом, заявленная и реальная скорость для беспроводных сетей - две большие разницы, причем на них еще и может влиять множество динамических факторов - которые сегодня есть, а завтра нет.

Есть у беспроводных сетей и другие особенности со знаком «минус».

Безопасность. Беспроводная сеть транслирует свои данные «наружу», т.е. ее всегда можно увидеть и «подслушать». Весь обмен трафиком также можно прослушать, иногда даже находясь вне офисного здания. Шифрование несколько снижает остроту проблемы, но старые алгоритмы (типа WEP) легко взламываются, да и новые устойчивы не на 100%. Плюс, всегда остается теоретическая возможность взлома самой точки доступа или клиентского устройства, а в последнее время сообщений о таких возможностях (пусть они и преподносятся как теоретические) становится пугающе много.

Оборудование . Если у мобильных ПК благодаря стараниям Intel (и у мобильных устройств примерно по тому же поводу) с поддержкой Wi-Fi все хорошо, то в ПК адаптеров Wi-Fi практически никогда нет, их нужно докупать отдельно (в неттопах и моноблоках, при этом, они почти всегда есть). Но даже если докупать адаптер отдельно, то дешевые карты как правило идут с дешевыми же антеннами, которые работают очень плохо - чтобы получить хотя бы такой же уровень сигнала (и скорость передачи), как у стоящего рядом ноутбука, приходится докупать внешнюю антенну. Оборудование для Wi-Fi как правило стоит заметно дороже, чем аналогичное оборудование для проводной сети.

Необходимая оговорка

По приведенному списку плюсов и минусов получается так, что проводная сеть выглядит гораздо предпочтительнее беспроводной. Ну, абстрактно это действительно так: если нужна именно «скорость, стабильность и надежность», то приходится выбирать проводное подключение. Но у Wi-Fi есть огромное преимущество, которое перевешивает многие недостатки. Это преимущество - удобство.

Многие работодатели склонны его преуменьшать, мол «и на своем месте посидит, не развалится». Удобство - с одной стороны, штука эфемерная, ее в цифрах не выразишь. С другой стороны, при комфортных условиях работы работник, как правило, больше делает и меньше устает. Но решение нужно принимать исходя из того, чем занят сотрудник. Для инженера, который работает на ПК с двумя большими мониторами, и при этом постоянно работает с проектами по сети - проводное подключение является наилучшим выбором. А для менеджера по продажам, который проводит в офисе мало времени и не нуждается в отдельном рабочем месте, лучше организовать беспроводной доступ. Это лишь один из примеров, на самом деле их гораздо больше.

Итоги и выводы

Когда какие сети выбрать? Ну, если отбросить аргументы типа «лень тянуть кабели, поэтому пусть будет WiFi» или «все равно денег на точки доступа нормальные не дали, поэтому у всех будет кабель плюс WiFi в переговорке для финдира на б/у точке доступа с рынка», и сосредоточиться на объективных характеристиках…

Если нужна стабильность и высокая скорость доступа, если работа ведется с использованием сетевых сервисов или вообще организована через тонкие клиенты, то без полноценной проводной инфраструктуры не обойтись, и создавать ее все равно придется - включая протяжку кабелей, организацию коммутации и размещение соответствующего оборудования.

Если сотрудников относительно немного, они не нуждаются в полноценном рабочем месте (того же ноутбука достаточно), если количество работников в офисе и структура их размещения частенько меняются, а потребности в скорости и стабильности доступа невелики - то проще и удобнее использовать Wi-Fi. Тем более, что при такой схеме у работников скорее всего будут ноутбуки, где адаптеры уже есть, а точку доступа Wi-Fi можно просто воткнуть в одну из свободных розеток.

Главное - помнить о тонких моментах (и, например, ставить надежное шифрование заранее, а не после взлома сети), правильно составить проект и грамотно подбирать оборудование.

Ну и хорошо бы строить сеть исходя из потребностей и нужд работников и предприятия, а не имеющегося бюджета и степени самодурства руководителей, но это уже как повезет.

PS. Что касается обсуждения «тонких мест» - читатели с опытом могут высказаться в комментариях, либо предложить рассказ о своем опыте создания сетевой инфраструктуры в офисе.

150 лет назад был только один метод связи – проводная радиосвязь. И пусть в нашу жизнь уже давно вошла беспроводная радиосвязь, проводные методы передачи голоса и текстовых сообщений все так же «работают». Правда, они сильно изменились с тех пор.

Какая связь бывает, каковы принципы ее работы, в чем особенности – об этом далее.

Классификация радиосвязи

Проводная связь, только став популярной, сразу «вытиснилась» беспроводной мобильной. Но, классификация и технические параметры проводной радиосвязи постоянно улучшаются. Операторы предлагают новые решения и системы связи, лучше предыдущих.

Так, с каждым годом предлагаются лучшие средства для организации проводной связи на предприятиях любого масштаба и направления.

Проводная связь и радиосвязь

Принцип работы проводной радиосвязи таков:

  1. Автономный приемопередатчик с помощью радиоволн передает сигнал по электрическому кабелю другому радиоприемнику
  2. Как только сообщение отправляется, оно переходит на АТС или центр коммутации сообщений, который, в свою очередь, подключены к региональной линии
  3. Региональные линии подключаются к международным

Такие системы чаще всего используются в небольших офисах, но их более «продвинутые» модификации можно применять и на объектах государственного уровня.

Система проводной радиосвязи

Главный минус системы проводной радиосвязи – потеря сигнала на кабеле. Чтобы передавать сообщения с наибольшей скоростью применяют оптоволоконные линии связи.

Изготавливается он из специального пластика со световодом в пару микрон, затем защищается более плотным материалом – заполнителем, и покрывается сверху оболочкой.

Применяется оптоволокно при организации магистральных систем проводной радиосвязи, а также, при подведении проводов к приемопередатчикам.

Беспроводная радиосвязь

Современная беспроводная радиосвязь подразделяется на мобильную и спутниковую. Иногда к ней можно отнести IP-телефонию.

Простыми словами, беспроводной радиосвязью можно называть исключительно радио и спутниковую связь. Но, сегодня многие привыкли ассоциировать это понятие с виртуальной и сотовой связью.

Спутниковая беспроводная радиосвязь построена таким образом, что сигнал передается/принимается радиооборудованием непосредственно через коммуникационный спутник.

Сотовая связь вначале может тоже показаться беспроводной, так как пользователю не нужно для связи с другим абонентом подключаться к сети или розетке. То есть, он может свободно двигаться по всему периметру сети, и вести переговоры. Но.

Данные, которые передаются посредством сотовой связи, идут на радиовышку, а затем, по проводам «транспортируются» к необходимому абоненту.

На правах заключения

Однозначно ответить, какая связь лучше – проводная или беспроводная, трудно. В каждой конкретной ситуации выбор делается с учетом многих факторов. Поэтому, нужно тщательно взвешивать все «за и против».

Если у вас есть вопросы касаемо проводной и беспроводной радиосвязи, специалисты нашей Компании всегда готовы дать вам исчерпывающие ответы на них. Для этого нужно просто позвонить к нам по номеру, указанному выше.

Передача информации между компьютерами. Проводная и беспроводная связь. Задания на повторение:

  • Определите какое из указанных имен файлов удовлетворяет маске?ba*r.?xt
  • bar.txt 2)obar.txt 3)obar.xt 4)barr.txt
  • 2. Определите, какое из указанных имён файлов удовлетворяет маске: z*ch??.?
  • zchl.tmp; 2) zachet.c;
  • 3) zadacha.doc; 4) zach.h
  • 3. Определите, какое из указанных имен файлов удовлетворяет маске: *te*t.?st
  • test.sts 2) fortests.sst
  • 3) 1test.tst 4) lastbest.lst
Задания на повторение:
  • Переведите в десятичную систему счисления: 10001102, 122103, 56437, A21F16
  • Переведите число 1085 в системы счисления с основанием 2, 4, 8, 16
Задания на повторение:
  • Расставьте необходимые действия для перехода из одних единиц в другие:
  • Бит → байт → Килобайт → Мегабайт → Гигабайт
  • Гигабайт → Мегабайт → Килобайт → байт → бит
Задачи на повторение:
  • Переведите в биты: 3 байта, 4 Мб, 3 Гб
  • В байты: 48 бит, 4 Мб, 6 Кб
  • В килобайты: 104856 бит, 66 Мб
  • В мегабайты: 25 Гб
  • отправитель информации
  • получатель информации
  • канал передачи
  • Передача информации между компьютерами существует с самого момента возникновения ЭВМ. Она позволяет организовать совместную работу отдельных компьютеров, решать одну задачу с помощью нескольких компьютеров, совместно использовать ресурсы и решать множество других проблем.
Компьютерная сеть это система компьютеров, связанная каналами передачи информации.
  • Компьютерные сети
  • глобальные
  • локальные
  • Локальные сети- это сети небольшие по масштабам, они работают в пределах одного помещения, здания, предприятия. Они объединяют относительно небольшое количество компьютеров (до 1000 штук).
  • Достоинства локальных сетей
  • Высокая скорость передачи, большая пропускная способность;
  • Ограниченное, точно определенное число компьютеров, подключаемых к сети;
  • Имеет один или несколько взаимосвязанных центров управления.
  • Топология локальных сетей – это физическое расположение компьютеров сети относительно друг друга и способ соединения их линиями.
Кольцевая топология
  • Каждый компьютер соединен друг с другом. Сигнал, несущий информацию идет по кругу.
Топология «Шина»
  • Компьютеры соединены последовательно и подключены к одному кабелю
Топология «Звезда»
  • К каждому компьютеру подходит отдельный кабель из одного центрального узла.
  • Технология «клиент-сервер»
  • Клиент
    • посылает запрос с заданием
    • выводит на экран ответ, полученный от сервера
  • Сервер
    • принимает запросы от клиентов и ставит их в очередь
    • выполняет задание
    • посылает ответ с результатами
  • ответ
  • запрос
  • сервер
  • рабочая станция
  • Главный компьютер сети, который предоставляет доступ к общей базе данных, обеспечивает совместное использование устройств ввода-вывода и взаимодействия пользователей называется сервером.
  • Компьютер сети, который только использует сетевые ресурсы, но сам свои ресурсы в сеть не отдает называется клиентом (часто его еще называют рабочей станцией).
  • витая пара
  • вид кабеля связи, представляет собой одну или несколько пар изолированных проводников, скрученных между собой, покрытых пластиковой оболочкой. скручивание проводов уменьшает влияние внешних электромагнитных полей на передаваемые сигналы. Используется в телекоммуникациях и в компьютерных сетях в качестве сетевого носителя во многих технологиях, В настоящее время, благодаря своей дешевизне и лёгкости в монтаже, является самым распространённым решением для локальных сетей.
      • коаксиальный кабель
      • кабель, в котором внутренний провод для снижения радиопомех окружен вторым экранирующим проводом. способен передавать сигнал на расстояние до 180 м. Данный тип кабеля применяются для передачи радиочастотных сигналов на расстояние.
    • ОПТОВОЛОКОННЫЙ КАБЕЛЬ
    • кабель состоит из двух волокон с отдельными коннекторами. Одно из них служит для передачи, а другое - для приема. Жесткость волокон увеличена покрытием из пластика, а прочность - волокнами из кевлара. Оптоволоконный кабель идеально подходит для создания сетевых магистралей, и в особенности для соединения между зданиями, так как он нечувствителен к влажности и другим внешним условиям.
  • Обмен данными в сетях
  • Протокол – это набор соглашений и правил, определяющих порядок обмена данными в сети.
  • В сетях, подключенных к Интернету – протокол TCP/IP (Transmission Control Protocol / Internet Protocol)
  • Разбивка на пакеты (до 1,5 Кб):
  • Беспроводные сети
  • Каналы связи:
    • радиосвязь, обычно до 100 м (11 Мбит/c, 54 Мбит/с)
    • инфракрасное излучение (5-10 Мбит/с)
    • инфракрасные лазеры (до 100 Мбит/с)
  • Технология WiFi (Wireless Fidelity )
  • точка доступа
  • до 50 компьютеров
Глобальные сети:
  • Глобальная сеть – это объединения компьютеров, расположенных на удаленном расстоянии, для общего использования мировых информационных ресурсов. На сегодняшний день их насчитывается в мире более 200. Из них наиболее известной и самой популярной является сеть Интернет.
Основной характеристикой каналов передачи информации является их пропускная способность (скорость передачи информации).
  • Основной характеристикой каналов передачи информации является их пропускная способность (скорость передачи информации).
  • Пропускная способность канала равна количеству информации, которое может передаваться по нему в единицу времени.
  • Пропускная способность измеряется в бит/с, байт/c, Кбит/c, Кбайт/c, и т.д.
  • q- пропускная способность канала (бит/с)
  • t- время передачи (сек)
  • Любой канал связи имеет ограниченную пропускную способность, это число ограничивается свойствами аппаратуры и самой линии (кабеля). Объём переданной информации I вычисляется по формуле:
  • Задачи:
  • Информационное сообщение объемом 2,5 кбайт передается со скоростью 2560 бит/мин. За сколько минут будет передано данное сообщение?
  • Какой объем информации можно передать за 10 мин по каналу с пропускной способностью 5 кбайт/с
  • Передача данных через ADSL- заняла 5 минут. За это время был передан файл, размер которого 3000 Кбайт. Определите минимальную скорость (бит/с) (пропускную способность канала), при которой такая передача возможна.
  • Через ADSL-соединение файл размером 2500 Кбайт передавался 40 секунд. Сколько секунд потребуется для передачи файла размером 2750 Кбайт.
  • Модем передаёт данные со скоростью 56 Кбит/сек. Передача текстового файла заняла 4,5 минут. Определите, сколько страниц содержал переданный текст, если известно, что он был представлен в шестнадцатибитной кодировке Unicode, а на одной странице – 3072 символа.
  • Домашнее задание
  • Теорию учить
  • Решить задачи письменно в тетради:
  • а) Скорость передачи данных через ADSL-соединение равна 128000бит/с.Через данное соединение передают файл размером 625кбайт. Определите время передачи файла в секундах.
  • б) Передача данных через ADSL- заняла 2 минуты. За это время был передан файл, размер которого 3750Кбайт. Определите минимальную скорость (бит/с), при которой такая передача возможна.
  • 3. Используя лекцию на сайте www.mkochergina.ucoz.ru заполнить таблицу:

Сложно представить жизнь современного человека без интернета. Просмотр почты, ведение деловой и личной переписки, чтение новостей, просмотр фильмов и телепередач, стало возможным с появлением компьютерных сетей. А с появлением мобильных устройств, таких как смартфоны, планшеты, ноутбуки появилась возможность обмена информации практически в любом месте, где бы человек не находился. Это стало возможным с появлением беспроводных LAN и WAN.

История появления и перспективы развития беспроводных сетей

В 80-х годах прошлого века появился стандарт цифровой передачи данных GSM. На котором до сих пор работают почти все операторы мобильной связи. Это можно считать отправной точкой развития беспроводных сетевых технологий. Данный протокол стремительно совершенствовался, и в 1997 году появилась новая технология обмена информацией на расстоянии без необходимости использования проводов. Такая технология получила название IEEE 802.11, который более известный широкому кругу людей как WiFi.

С момента появления первого варианта 802.11а в 90-х годах прошлого века прошло не много времени, появились более совершенные технологии, увеличилась скорость и качество перемещения данных. Беспроводными сетями окутан практически все здания, офисы и промышленные предприятия. Ожидается переход на более новая спецификация 802.16, который получил название WiMax. Эта технология позволяет значительно расширить диапазон подключения с нескольких десятком метров по WiFi, до десятков километров без потери качества и скорости. Конечно эта технология будет по началу дорогостоящей, но со временем все мобильные устройства планируется оснащать радиомодулем WiMax.

Беспроводные компьютерные сети: классификация и принцип работы

В общем случае беспроводная компьютерная система призвана обеспечить взаимодействие пользователей, различных серверов и баз данных посредством обмена цифровыми сигналами через радиоволны. Подключение может осуществляться несколькими способами: Bluetooth, WiFi или WiMax. Классификация проводных и беспроводных сетей осуществляется по одинаковым признакам:

  1. Персональная компьютерная сеть (PAN - Personal Area Network). Соединение осуществляется, например, между мобильными телефонами, находящимися в непосредственной близости друг от друга.
  2. Локальная компьютерная сеть (LAN - Local Area Network). Подключение в пределах одного здания, офиса или квартиры.
  3. Городская компьютерная сеть (MAN - Metropolian Area Network). Работа в пределах одного города.
  4. Глобальная компьютерная сеть (WAN - Wide Area Network). Глобальный выход в интернет.

Спецификация 802.11 это совокупность протоколов, которые в полной мере соответствуют принятым нормативам открытых сетей модели OSI (Open System Interconnection). Эта эталонная модель описывает семь уровней обмена данными, но протокол 802.11 отличается от проводного, только на физическом, и, частично, на канальном уровне. Это уровни непосредственного обмена информацией. Физическим уровнем передачи является радиоволны, а канальный уровень управляет доступом и обеспечивает обмен данными между двумя устройствами.

Вайфай работает на двух диапазонах частот: 2,4 (стандарты 802.11a/b/g/n) или 5 (только 802.11n) ГГц. Радиус действия может достигать 250-300 метров в пределах прямой видимости и до 40-50 метров в закрытых помещениях. Каждое конкретное оборудование обеспечивает различные физические показатели в зависимости от модели и фирмы производителя.

Скорость передачи потока данных отличается в зависимости от используемого стандарта и может составлять от 11 Мбит/с по стандарту 802.11b до 600 Мбит/с в 801.11n.

Организация беспроводной сети

WiFi может использоваться для нескольких целей:

  • организация корпоративной сети предприятия;
  • организация удаленного рабочего места;
  • обеспечение входа в интернет.

Соединение осуществляется двумя основными способами:

  • Работа в режиме инфраструктуры (Infrastructure Mode), когда все компьютеры связываются между собой через точку доступа (Access Point). Роутер работает в режиме коммутатора, и очень часто имеет проводное соединение и доступ в интернет. Чтобы подключиться нужно знать идентификатор (SSID). Это наиболее привычный для обывателя тип подключения. Это актуально для небольших офисов или квартир. В роли точек доступа выступают роутера (Router).
  • Второй вариант подключения используется если необходимо связать два устройства между собой напрямую. Например, два мобильных телефона или ноутбука. Такой режим называется Adhoc, или равный с равным (peer to peer).

Бытовые роутеры дают возможность подключиться не только через вайфай. Практически каждый оборудован несколькими портами Ethernet, что дает возможность вывести в сеть гаджеты, которые не оборудованы WiFi модулем. В этом случае роутер вступает в качестве моста. Позволяющего объединить проводные и беспроводные устройства.

Для увеличения радиуса действия сети или для расширения существующей топологии, точки доступа объединяются в пул в режиме Adhoc, а другие подключаются к сети через маршрутизатор или коммутатор. Есть возможность увеличить зону покрытия путем установки дополнительных точек доступа в качестве репитера (повторителя). Репитер улавливает сигнал с базовой станции и позволяет клиентам подключаться к нему.

Практически в любом общественном месте можно поймать сигнал WiFi и подключиться для выхода в интернет. Такие общественные точки доступа называются Hotspot. Публичные зоны с вайфай покрытием встречаются в кафе, ресторанах, аэропортах, офисах, школах и других местах. Это очень популярное на данный момент направление.

Вопросы безопасности беспроводной сети

Проблемы безопасности касаются не только передачи информации по радиоканалам. Это глобальный вопрос связанный с работоспособностью любой системы и, тем более, открытой. Всегда есть вероятность прослушать эфир, удаленно перехватить сигнал, взломать систему и провести анонимную атаку. Чтобы избежать несанкционированное подключение разработаны и применяются методы шифрования информации, вводятся пароли для получения доступа на подключение, запрещается транслирование имени точки доступа (SSID), ставятся фильтр на подключаемых клиентов и прочие меры.

Основную угрозу представляют собой:

  • «Чужаки» или несанкционированные устройства, которые получили доступ к точке доступа в обход средств защиты.
  • Нехарактерная природа подключения позволяет мобильным устройствам автоматически подключаться к доверенной (а иногда и не очень) сети. Таким образом для доступа к информации злоумышленник имеет возможность переключить пользователя на свою точку доступа с последующей атакой или для поиска тонких мест в защите.
  • Уязвимости, связанные с конфигурацией сетей и подключаемых устройств. Риск возникает при использовании слабых механизмов защиты, простых паролей и пр.
  • Некорректно настроенная точка доступа. Многие пользователи сети оставляют значение паролей, IP-адреса и другие настройки в том виде, в котором они были настроены на заводе. Преступнику не составляет труда проникнуть в защищенную зону, перенастроить сетевое оборудование под себя и пользоваться ресурсами сети.
  • Взлом криптозащиты сети позволяет использовать передаваемую внутри сети информацию. Для взлома шифрования сейчас не нужно иметь специальных знаний или навыков. Можно найти огромное количество программ сканирующих и подбирающих защитные коды.

Следует также отметить, что технологии взлома постоянно совершенствуются, постоянно находятся новые способы и варианты атак. Существует также большой риск утечки информации позволяющий узнать топологию сети и варианты подключения к ней.

Преимущества и недостатки беспроводных сетей

Основное преимущество передачи информации по воздуху, вытекает из самого названия технологии. Нет необходимости в прокладке огромного количества дополнительных проводов. Это существенно снижает время на организацию сети и затраты на монтаж. Для использования вайфай сетей нет необходимости приобретать специальную лицензию, значит можно быть уверенным в том, что устройство, соответствующее стандарту 802.11, приобретенное в одной точке земного шара, будет работать в любой другой.

Беспроводные сети хорошо модернизируются и масштабируются. При необходимости увеличить покрытие сети, всего-навсего устанавливается одно или несколько дополнительных роутеров без необходимости изменить всю систему. В зонах с неравномерным покрытием, устройство-клиент всегда будет переключаться на ту точку, которая имеет наивысшее качество связи.

Среди недостатков стоит отметить проблемы с безопасностью. Все современные роутеры поддерживают несколько протоколов шифрования, есть возможность фильтрации клиентов по MAC-адресам. Таким образом при достаточной внимательности можно организовать систему наименее подверженную рискам. Еще один недостаток это перекрытие зон покрытия от различных роутеров. В большинстве случаев эта проблема решается переключением работы на другом канале.