Линейная регрессионная модель. Простая линейная регрессия. Оценки параметров. Проверка значимости регрессии. Примеры Простейшая регрессионная модель имеет вид

После того как с помощью корреляционного анализа выявлено наличие статистически значимых связей между переменными и оценена степень их тесноты, обычно переходят к математическому описанию конкретного вида зависимостей с помощью регрессионного анализа.

Корреляционная зависимость между двумя переменными – это функциональная зависимость между одной переменной и ожидаемым (условным средним) значением другой. Уравнение такой зависимости между двумя переменными называется уравнением регрессии. В случае, если переменных две (одна зависимая и одна независимая), то регрессия называется простой, а если их более двух, то множественная. Если зависимость между переменными линейная, то регрессия называется линейной, в противном случае – нелинейной.

Рассмотрим подробно простую линейную регрессию. Модель такой зависимости может быть представлена в виде

y = α + βx + ε, (1.1)

где у – зависимая переменная (результативный признак);

х – независимая переменная (факторный признак);

α – свободный член уравнения регрессии или константа;

β – коэффициент уравнения регрессии;

ε – случайная величина, характеризующая отклонения фактических значений зависимой переменной у от модельных или теоретических значений, рассчитанных по уравнению регрессии.

При этом предполагается, что объясняющая переменная х – величина не случайная, а объясняемая y – случайная. В дальнейшем это предположение можно будет убрать.

1.2.1. Метод наименьших квадратов (мнк) и его предпосылки

α и β – это параметры модели регрессии (1.1), которые должны быть оценены на основе выборочных данных. На основе этих же выборочных данных должна быть оценена дисперсия ε. Одним из методов вычисления таких оценок является классический метод наименьших квадратов (МНК). Суть МНК состоит в минимизации суммы квадратов отклонений фактических значений зависимой переменной у от их условных математических ожиданий , определяемых по уравнению регрессии:=α + βx , в предположении, что математическое ожидание ε равно нулю. Математическое ожидание y обозначим через, а сумму квадратов отклонений черезQ(.

Здесь суммирование ведётся по всей генеральной совокупности. Данную сумму называют остаточной суммой квадратов.

Чтобы минимизировать эту функцию по параметрам обратимся к условиям первого порядка, полученным дифференцированиемQ() по

Далее пусть для оценки параметров модели (1.1) организована выборка, содержащая n пар значений переменных (x i ,y i), где i принимает значения от 1 до n (i =). Приравнивая частные производные к нулю и переходя от генеральной совокупности к выборке (заменив параметры на их оценки), получим систему нормальных уравнений для вычисления оценок параметровα и β. Обозначим эти оценки соответственно как а и b . Получим следующую систему нормальных уравнений

Если оценённое уравнение обозначить как y = a + bx + e , где е – одна из реализаций случайной величины ε, соответствующая конкретной выборки, то выражение в скобках системы нормальных уравнений есть не что иное, как остаток уравнения регрессии е i = y i и тогда первое уравнение этой системы примет вид = 0. То есть среднее значение остатков равно нулю. Таким образом, если уравнение регрессии содержит константу, то сумма остатков в оценённом уравнении всегда равна нулю.

Второе уравнение системы в этих обозначениях даёт = 0, т. е. векторы значений независимой переменной и остатков ортогональны (независимы).

Приведём один из вариантов формул для вычисления таких оценок:

a = – b, b = . (1.2)

Известно также, что несмещённой оценкой дисперсии случайных отклонений является остаточная дисперсия, вычисляемая из соотношения:

= .

Итак, оценённая модель линейной парной регрессии имеет вид

y = a + bx + e , (1.3)

где е – наблюдаемые отклонения фактических значений зависимой переменной у от расчётных , которые рассчитываются из соотношения=a + bx .

Различие между ε и е состоит в том, что ε – это случайная величина и предсказать её значения не представляется возможным, в то время как е – это наблюдаемые значения отклонений (е = у –) и эти отклонения можно считать случайной выборкой из совокупности значений остатков регрессии и их можно анализировать с использованием статистических методов.

Как было отмечено, МНК строит оценки регрессии на основе минимизации суммы квадратов отклонений или остатков ε, поэтому важно знать их свойства. Для получения «хороших» МНК-оценок необходимо, чтобы выполнялись следующие основные предпосылки относительно остатков модели (1.1), называемые предположениями Гаусса – Маркова.

Первое предположение говорит о том, что математическое ожидание регрессионных остатков равно нулю и подразумевает, что в среднем, линия регрессии должна быть истинной. Предположение 3 утверждает, что все регрессионные остатки имеют одну и ту же дисперсию, и называется предположением гомоскедастичности, а предположение 4 исключает любую форму автокорреляции между ними, т. е. подразумевает нулевую корреляцию между различными регрессионными остатками. Вместе взятые эти предположения означают, что регрессионные остатки являются некоррелированными извлечениями из генеральной совокупности с распределением, имеющем нулевое математическое ожидание и постоянную дисперсию .

Предположение 2 утверждает независимость векторов значений независимой переменной и регрессионных остатков.

Известно, что если выполняются эти четыре предположения, то верна теорема Гаусса Маркова , утверждающая, что в этом случае МНК-оценка b является наилучшей линейной несмещённой оценкой параметра β. Наилучшей в смысле эффективности.

Кроме сформулированных предположений вводится ещё одно, которое позволило бы сформулировать показатели точности уравнения регрессии и его оценок. Эта предпосылка утверждает, что остатки должны следовать нормальному закону распределения с нулевым математическим ожиданием и постоянной дисперсией.

В дальнейшем уравнение =a + b x будем называть выборочным уравнением регрессии или просто уравнением регрессии, а его коэффициенты, соответственно, свободным членом (а ) и коэффициентом уравнения регрессии (b ).

Свободный член уравнения регрессии обычно не интерпретируется. Коэффициент регрессии показывает, насколько в среднем изменится зависимая переменная (в своих единицах измерения) при изменении независимой переменной на единицу своего измерения.

При этом, необходимо иметь в виду, что рассматриваемые коэффициенты являются оценками параметров уравнения регрессии =α + βx со всеми вытекающими отсюда последствиями, в том числе и необходимостью получения оценок точности уравнения регрессии и его параметров.

Рассмотрим некоторые из них.

Что такое регрессия?

Рассмотрим две непрерывные переменные x=(x 1 , x 2 , .., x n), y=(y 1 , y 2 , ..., y n).

Разместим точки на двумерном графике рассеяния и скажем, что мы имеем линейное соотношение , если данные аппроксимируются прямой линией.

Если мы полагаем, что y зависит от x , причём изменения в y вызываются именно изменениями в x , мы можем определить линию регрессии (регрессия y на x ), которая лучше всего описывает прямолинейное соотношение между этими двумя переменными.

Статистическое использование слова "регрессия" исходит из явления, известного как регрессия к среднему, приписываемого сэру Френсису Гальтону (1889).

Он показал, что, хотя высокие отцы имеют тенденцию иметь высоких сыновей, средний рост сыновей меньше, чем у их высоких отцов. Средний рост сыновей "регрессировал" и "двигался вспять" к среднему росту всех отцов в популяции. Таким образом, в среднем высокие отцы имеют более низких (но всё-таки высоких) сыновей, а низкие отцы имеют сыновей более высоких (но всё-таки довольно низких).

Линия регрессии

Математическое уравнение, которое оценивает линию простой (парной) линейной регрессии:

x называется независимой переменной или предиктором.

Y - зависимая переменная или переменная отклика. Это значение, которое мы ожидаем для y (в среднем), если мы знаем величину x , т.е. это «предсказанное значение y »

  • a - свободный член (пересечение) линии оценки; это значение Y , когда x=0 (Рис.1).
  • b - угловой коэффициент или градиент оценённой линии; она представляет собой величину, на которую Y увеличивается в среднем, если мы увеличиваем x на одну единицу.
  • a и b называют коэффициентами регрессии оценённой линии, хотя этот термин часто используют только для b .

Парную линейную регрессию можно расширить, включив в нее более одной независимой переменной; в этом случае она известна как множественная регрессия .

Рис.1. Линия линейной регрессии, показывающая пересечение a и угловой коэффициент b (величину возрастания Y при увеличении x на одну единицу)

Метод наименьших квадратов

Мы выполняем регрессионный анализ, используя выборку наблюдений, где a и b - выборочные оценки истинных (генеральных) параметров, α и β , которые определяют линию линейной регрессии в популяции (генеральной совокупности).

Наиболее простым методом определения коэффициентов a и b является метод наименьших квадратов (МНК).

Подгонка оценивается, рассматривая остатки (вертикальное расстояние каждой точки от линии, например, остаток = наблюдаемому y - предсказанный y , Рис. 2).

Линию лучшей подгонки выбирают так, чтобы сумма квадратов остатков была минимальной.

Рис. 2. Линия линейной регрессии с изображенными остатками (вертикальные пунктирные линии) для каждой точки.

Предположения линейной регрессии

Итак, для каждой наблюдаемой величины остаток равен разнице и соответствующего предсказанного Каждый остаток может быть положительным или отрицательным.

Можно использовать остатки для проверки следующих предположений, лежащих в основе линейной регрессии:

  • Остатки нормально распределены с нулевым средним значением;

Если допущения линейности, нормальности и/или постоянной дисперсии сомнительны, мы можем преобразовать или и рассчитать новую линию регрессии, для которой эти допущения удовлетворяются (например, использовать логарифмическое преобразование или др.).

Аномальные значения (выбросы) и точки влияния

"Влиятельное" наблюдение, если оно опущено, изменяет одну или больше оценок параметров модели (т.е. угловой коэффициент или свободный член).

Выброс (наблюдение, которое противоречит большинству значений в наборе данных) может быть "влиятельным" наблюдением и может хорошо обнаруживаться визуально, при осмотре двумерной диаграммы рассеяния или графика остатков.

И для выбросов, и для "влиятельных" наблюдений (точек) используют модели, как с их включением, так и без них, обращают внимание на изменение оценки (коэффициентов регрессии).

При проведении анализа не стоит отбрасывать выбросы или точки влияния автоматически, поскольку простое игнорирование может повлиять на полученные результаты. Всегда изучайте причины появления этих выбросов и анализируйте их.

Гипотеза линейной регрессии

При построении линейной регрессии проверяется нулевая гипотеза о том, что генеральный угловой коэффициент линии регрессии β равен нулю.

Если угловой коэффициент линии равен нулю, между и нет линейного соотношения: изменение не влияет на

Для тестирования нулевой гипотезы о том, что истинный угловой коэффициент равен нулю можно воспользоваться следующим алгоритмом:

Вычислить статистику критерия, равную отношению , которая подчиняется распределению с степенями свободы, где стандартная ошибка коэффициента


,

- оценка дисперсии остатков.

Обычно если достигнутый уровень значимости нулевая гипотеза отклоняется.


где процентная точка распределения со степенями свободы что дает вероятность двустороннего критерия

Это тот интервал, который содержит генеральный угловой коэффициент с вероятностью 95%.

Для больших выборок, скажем, мы можем аппроксимировать значением 1,96 (то есть статистика критерия будет стремиться к нормальному распределению)

Оценка качества линейной регрессии: коэффициент детерминации R 2

Из-за линейного соотношения и мы ожидаем, что изменяется, по мере того как изменяется , и называем это вариацией, которая обусловлена или объясняется регрессией. Остаточная вариация должна быть как можно меньше.

Если это так, то большая часть вариации будет объясняться регрессией, а точки будут лежать близко к линии регрессии, т.е. линия хорошо соответствует данным.

Долю общей дисперсии , которая объясняется регрессией называют коэффициентом детерминации , обычно выражают через процентное соотношение и обозначают R 2 (в парной линейной регрессии это величина r 2 , квадрат коэффициента корреляции), позволяет субъективно оценить качество уравнения регрессии.

Разность представляет собой процент дисперсии который нельзя объяснить регрессией.

Нет формального теста для оценки мы вынуждены положиться на субъективное суждение, чтобы определить качество подгонки линии регрессии.

Применение линии регрессии для прогноза

Можно применять регрессионную линию для прогнозирования значения по значению в пределе наблюдаемого диапазона (никогда не экстраполируйте вне этих пределов).

Мы предсказываем среднюю величину для наблюдаемых, которые имеют определенное значение путем подстановки этого значения в уравнение линии регрессии.

Итак, если прогнозируем как Используем эту предсказанную величину и ее стандартную ошибку, чтобы оценить доверительный интервал для истинной средней величины в популяции.

Повторение этой процедуры для различных величин позволяет построить доверительные границы для этой линии. Это полоса или область, которая содержит истинную линию, например, с 95% доверительной вероятностью.

Простые регрессионные планы

Простые регрессионные планы содержат один непрерывный предиктор. Если существует 3 наблюдения со значениями предиктора P , например, 7, 4 и 9, а план включает эффект первого порядка P , то матрица плана X будет иметь вид

а регрессионное уравнение с использованием P для X1 выглядит как

Y = b0 + b1 P

Если простой регрессионный план содержит эффект высшего порядка для P , например квадратичный эффект, то значения в столбце X1 в матрице плана будут возведены во вторую степень:

а уравнение примет вид

Y = b0 + b1 P2

Сигма -ограниченные и сверхпараметризованные методы кодирования не применяются по отношению к простым регрессионным планам и другим планам, содержащим только непрерывные предикторы (поскольку, просто не существует категориальных предикторов). Независимо от выбранного метода кодирования, значения непрерывных переменных увеличиваются в соответствующей степени и используются как значения для переменных X . При этом перекодировка не выполняется. Кроме того, при описании регрессионных планов можно опустить рассмотрение матрицы плана X , а работать только с регрессионным уравнением.

Пример: простой регрессионный анализ

Этот пример использует данные, представленные в таблице:

Рис. 3. Таблица исходных данных.

Данные составлены на основе сравнения переписей 1960 и 1970 в произвольно выбранных 30 округах. Названия округов представлены в виде имен наблюдений. Информация относительно каждой переменной представлена ниже:

Рис. 4. Таблица спецификаций переменных.

Задача исследования

Для этого примера будут анализироваться корреляция уровня бедности и степень, которая предсказывает процент семей, которые находятся за чертой бедности. Следовательно мы будем трактовать переменную 3 (Pt_Poor ) как зависимую переменную.

Можно выдвинуть гипотезу: изменение численности населения и процент семей, которые находятся за чертой бедности, связаны между собой. Кажется разумным ожидать, что бедность ведет к оттоку населения, следовательно, здесь будет отрицательная корреляция между процентом людей за чертой бедности и изменением численности населения. Следовательно мы будем трактовать переменную 1 (Pop_Chng ) как переменную-предиктор.

Просмотр результатов

Коэффициенты регрессии

Рис. 5. Коэффициенты регрессии Pt_Poor на Pop_Chng.

На пересечении строки Pop_Chng и столбца Парам. не стандартизованный коэффициент для регрессии Pt_Poor на Pop_Chng равен -0.40374 . Это означает, что для каждого уменьшения численности населения на единицу, имеется увеличение уровня бедности на.40374. Верхний и нижний (по умолчанию) 95% доверительные пределы для этого не стандартизованного коэффициента не включают ноль, так что коэффициент регрессии значим на уровне p<.05 . Обратите внимание на не стандартизованный коэффициент, который также является коэффициентом корреляции Пирсона для простых регрессионных планов, равен -.65, который означает, что для каждого уменьшения стандартного отклонения численности населения происходит увеличение стандартного отклонения уровня бедности на.65.

Распределение переменных

Коэффициенты корреляции могут стать существенно завышены или занижены, если в данных присутствуют большие выбросы. Изучим распределение зависимой переменной Pt_Poor по округам. Для этого построим гистограмму переменной Pt_Poor .

Рис. 6. Гистограмма переменной Pt_Poor.

Как вы можете заметить, распределение этой переменной заметно отличается от нормального распределения. Тем не менее, хотя даже два округа (два правых столбца) имеют высокий процент семей, которые находятся за чертой бедности, чем ожидалось в случае нормального распределения, кажется, что они находятся "внутри диапазона."

Рис. 7. Гистограмма переменной Pt_Poor.

Это суждение в некоторой степени субъективно. Эмпирическое правило гласит, что выбросы необходимо учитывать, если наблюдение (или наблюдения) не попадают в интервал (среднее ± 3 умноженное на стандартное отклонение). В этом случае стоит повторить анализ с выбросами и без, чтобы убедиться, что они не оказывают серьезного эффекта на корреляцию между членами совокупности.

Диаграмма рассеяния

Если одна из гипотез априори о взаимосвязи между заданными переменными, то ее полезно проверить на графике соответствующей диаграммы рассеяния.

Рис. 8. Диаграмма рассеяния.

Диаграмма рассеяния показывает явную отрицательную корреляцию (-.65 ) между двумя переменными. На ней также показан 95% доверительный интервал для линии регрессии, т.е., с 95% вероятностью линия регрессии проходит между двумя пунктирными кривыми.

Критерии значимости

Рис. 9. Таблица, содержащая критерии значимости.

Критерий для коэффициента регрессии Pop_Chng подтверждает, что Pop_Chng сильно связано с Pt_Poor , p<.001 .

Итог

На этом примере было показано, как проанализировать простой регрессионный план. Была также представлена интерпретация не стандартизованных и стандартизованных коэффициентов регрессии. Обсуждена важность изучения распределения откликов зависимой переменной, продемонстрирована техника определения направления и силы взаимосвязи между предиктором и зависимой переменной.

25.07.16 Ирина Аничина

51850 0

В данной статье мы поговорим о том, как понять, качественную ли модель мы построили. Ведь именно качественная модель даст нам качественные прогнозы.

Prognoz Platform обладает обширным списком моделей для построения и анализа. Каждая модель имеет свою специфику и применяется при различных предпосылках.

Объект «Модель» позволяет построить следующие регрессионные модели:

  • Линейная регрессия (оценка методом наименьших квадратов);
  • Линейная регрессия (оценка методом инструментальных переменных);
  • Модель бинарного выбора (оценка методом максимального правдоподобия);
  • Нелинейная регрессия (оценка нелинейным методом наименьших квадратов).

Начнём с модели линейной регрессии. Многое из сказанного будет распространяться и на другие виды.

Модель линейной регрессии (оценка МНК)

где y – объясняемый ряд, x 1 , …, x k – объясняющие ряды, e – вектор ошибок модели, b 0 , b 1 , …, b k – коэффициенты модели.

Итак, куда смотреть?

Коэффициенты модели

Для каждого коэффициента на панели «Идентифицированное уравнение» вычисляется ряд статистик: стандартная ошибка, t -статистика , вероятность значимости коэффициента . Последняя является наиболее универсальной и показывает, с какой вероятностью удаление из модели фактора, соответствующего данному коэффициенту, не окажется значимым.

Открываем панель и смотрим на последний столбец, ведь он – именно тот, кто сразу же скажет нам о значимости коэффициентов.

Факторов с большой вероятностью незначимости в модели быть не должно.

Как вы видите, при исключении последнего фактора коэффициенты модели практически не изменились.

Возможные проблемы: Что делать, если согласно вашей теоретической модели фактор с большой вероятностью незначимости обязательно должен быть? Существуют и другие способы определения значимости коэффициентов. Например, взгляните на матрицу корреляции факторов.

Матрица корреляции

Панель «Корреляция факторов» содержит матрицу корреляции между всеми переменными модели, а также строит облако наблюдений для выделенной пары значений.

Коэффициент корреляции показывает силу линейной зависимости между двумя переменными. Он изменяется от -1 до 1. Близость к -1 говорит об отрицательной линейной зависимости, близость к 1 – о положительной.

Облако наблюдений позволяет визуально определить, похожа ли зависимость одной переменной от другой на линейную.

Если среди факторов встречаются сильно коррелирующие между собой, исключите один из них. При желании вместо модели обычной линейной регрессии вы можете построить модель с инструментальными переменными, включив в список инструментальных исключённые из-за корреляции факторы.

Матрица корреляции не имеет смысла для модели нелинейной регрессии, поскольку она показывает только силу линейной зависимости.

Критерии качества

Помимо проверки каждого коэффициента модели важно знать, насколько она хороша в целом. Для этого вычисляют статистики, расположенные на панели «Статистические характеристики».

Коэффициент детерминации (R 2 ) – наиболее распространённая статистика для оценки качества модели. R 2 рассчитывается по следующей формуле:

где n – число наблюдений; y i — значения объясняемой переменной; — среднее значение объясняемой переменной; i — модельные значения, построенные по оцененным параметрам.

R 2 принимает значение от 0 до 1 и показывает долю объяснённой дисперсии объясняемого ряда. Чем ближе R 2 к 1, тем лучше модель, тем меньше доля необъяснённого.

Возможные проблемы: Проблемы с использованием R 2 заключаются в том, что его значение не уменьшается при добавлении в уравнение факторов, сколь плохи бы они ни были. Он гарантированно будет равен 1, если мы добавим в модель столько факторов, сколько у нас наблюдений. Поэтому сравнивать модели с разным количеством факторов, используя R 2 , не имеет смысла.

Для более адекватной оценки модели используется скорректированный коэффициент детерминации (Adj R 2 ) . Как видно из названия, этот показатель представляет собой скорректированную версию R 2 , накладывая «штраф» за каждый добавленный фактор:

где k – число факторов, включенных в модель.

Коэффициент Adj R 2 также принимает значения от 0 до 1, но никогда не будет больше, чем значение R 2 .

Аналогом t -статистики коэффициента является статистика Фишера (F -статистика) . Однако если t -статистика проверяет гипотезу о незначимости одного коэффициента, то F -статистика проверяет гипотезу о том, что все факторы (кроме константы) являются незначимыми. Значение F -статистики также сравнивают с критическим, и для него мы также можем получить вероятность незначимости. Стоит понимать, что данный тест проверяет гипотезу о том, что все факторы одновременно являются незначимыми. Поэтому при наличии незначимых факторов модель в целом может быть значима.

Возможные проблемы: Большинство статистик строится для случая, когда модель включает в себя константу. Однако в Prognoz Platform мы имеем возможность убрать константу из списка оцениваемых коэффициентов. Стоит понимать, что такие манипуляции приводят к тому, что некоторые характеристики могут принимать недопустимые значения. Так, R 2 и Adj R 2 при отсутствии константы могут принимать отрицательные значения. В таком случае их уже не получится интерпретировать как долю, принимающую значение от 0 до 1.

Для моделей без константы в Prognoz Platform рассчитываются нецентрированные коэффициенты детерминации (R 2 и Adj R 2 ). Модифицированная формула приводит их значения к диапазону от 0 до 1 даже в модели без константы.

Посмотрим значения описанных критериев для приведённой выше модели:

Как мы видим, коэффициент детерминации достаточно велик, однако есть ещё значительная доля необъяснённой дисперсии. Статистика Фишера говорит о том, что выбранная нами совокупность факторов является значимой.

Сравнительные критерии

Кроме критериев, позволяющих говорить о качестве модели самой по себе, существует ряд характеристик, позволяющих сравнивать модели друг с другом (при условии, что мы объясняем один и тот же ряд на одном и том же периоде).

Большинство моделей регрессии сводятся к задаче минимизации суммы квадратов остатков (sum of squared residuals , SSR ) . Таким образом, сравнивая модели по этому показателю, можно определить, какая из моделей лучше объяснила исследуемый ряд. Такой модели будет соответствовать наименьшее значение суммы квадратов остатков.

Возможные проблемы: Стоит заметить, что с ростом числа факторов данный показатель так же, как и R 2 , будет стремиться к граничному значению (у SSR, очевидно, граничное значение 0).

Некоторые модели сводятся к максимизации логарифма функции максимального правдоподобия (LogL ) . Для модели линейной регрессии эти задачи приводят к одинаковому решению. На основе LogL строятся информационные критерии, часто используемые для решения задачи выбора как регрессионных моделей, так и моделей сглаживания:

  • информационный критерий Акаике (Akaike Information criterion , AIC )
  • критерий Шварца (Schwarz Criterion , SC )
  • критерий Ханнана-Куина (Hannan - Quinn Criterion , HQ )

Все критерии учитывают число наблюдений и число параметров модели и отличаются друг от друга видом «функции штрафа» за число параметров. Для информационных критериев действует правило: наилучшая модель имеет наименьшее значение критерия.

Сравним нашу модель с её первым вариантом (с «лишним» коэффициентом):

Как можно увидеть, данная модель хоть и дала меньшую сумму квадратов остатков, оказалась хуже по информационным критериям и по скорректированному коэффициенту детерминации.

Анализ остатков

Модель считается качественной, если остатки модели не коррелируют между собой. В противном случае имеет место постоянное однонаправленное воздействие на объясняемую переменную не учтённых в модели факторов. Это влияет на качество оценок модели, делая их неэффективными.

Для проверки остатков на автокорреляцию первого порядка (зависимость текущего значения от предыдущих) используется статистика Дарбина-Уотсона (DW ) . Её значение находится в промежутке от 0 до 4. В случае отсутствия автокорреляции DW близка к 2. Близость к 0 говорит о положительной автокорреляции, к 4 — об отрицательной.

Как оказалось, в нашей модели присутствует автокорреляция остатков. От автокорреляции можно избавиться, применив преобразование «Разность» к объясняемой переменной или воспользовавшись другим видом модели – моделью ARIMA или моделью ARMAX.

Возможные проблемы: Статистика Дарбина-Уотсона неприменима к моделям без константы, а также к моделям, которые в качестве факторов используют лагированные значения объясняемой переменной. В этих случаях статистика может показывать отсутствие автокорреляции при её наличии.

Модель линейной регрессии (метод инструментальных переменных)

Модель линейной регрессии с инструментальными переменными имеет вид:

где y – объясняемый ряд, x 1 , …, x k – объясняющие ряды, x ̃ 1 , …, x ̃ k – смоделированные при помощи инструментальных переменных объясняющие ряды, z 1 , …, z l – инструментальные переменные, e , j – вектора ошибок моделей, b 0 , b 1 , …, b k – коэффициенты модели, c 0 j , c 1 j , …, c lj – коэффициенты моделей для объясняющих рядов.

Схема, по которой следует проверять качество модели, является схожей, только к критериям качества добавляется J -статистика – аналог F -статистики, учитывающий инструментальные переменные.

Модель бинарного выбора

Объясняемой переменной в модели бинарного выбора является величина, принимающая только два значения – 0 или 1.

где y – объясняемый ряд, x 1 , …, x k – объясняющие ряды, e – вектор ошибок модели, b 0 , b 1 , …, b k – коэффициенты модели, F – неубывающая функция, возвращающая значения от 0 до 1.

Коэффициенты модели вычисляются методом, максимизирующим значение функции максимального правдоподобия. Для данной модели актуальными будут такие критерии качества, как:

  • Коэффициент детерминации МакФаддена (McFadden R 2 ) – аналог обычного R 2 ;
  • LR -статистика и её вероятность — аналог F -статистики;
  • Сравнительные критерии: LogL , AIC , SC , HQ.

Нелинейная регрессия

Под моделью линейной регрессии будем понимать модель вида:

где y – объясняемый ряд, x 1 , …, x k – объясняющие ряды, e – вектор ошибок модели, b – вектор коэффициентов модели.

Коэффициенты модели вычисляются методом, минимизирующим значение суммы квадратов остатков. Для данной модели будут актуальны те же критерии, что и для линейной регрессии, кроме проверки матрицы корреляций. Отметим ещё, что F-статистика будет проверять, является ли значимой модель в целом по сравнению с моделью y = b 0 + e , даже если в исходной модели у функции f (x 1 , …, x k , b ) нет слагаемого, соответствующего константе.

Итоги

Подведём итоги и представим перечень проверяемых характеристик в виде таблицы:

Надеюсь, данная статья была полезной для читателей! В следующий раз мы поговорим о других видах моделей, а именно ARIMA, ARMAX.

Иногда так бывает: задачу можно решить чуть ли не арифметически, а на ум прежде всего приходят всякие интегралы Лебега и функции Бесселя. Вот начинаешь обучать нейронную сеть, потом добавляешь еще парочку скрытых слоев, экспериментируешь с количеством нейронов, функциями активации, потом вспоминаешь о SVM и Random Forest и начинаешь все сначала. И все же, несмотря на прямо таки изобилие занимательных статистических методов обучения, линейная регрессия остается одним из популярных инструментов. И для этого есть свои предпосылки, не последнее месте среди которых занимает интуитивность в интерпретации модели.

Немного формул

В простейшем случае линейную модель можно представить так:

Y i = a 0 + a 1 x i + ε i

Где a 0 - математическое ожидание зависимой переменной y i , когда переменная x i равна нулю; a 1 - ожидаемое изменение зависимой переменной y i при изменении x i на единицу (этот коэффициент подбирают таким образом, чтобы величина ½Σ(y i -ŷ i) 2 была минимальна - это так называемая «функция невязки»); ε i - случайная ошибка.
При этом коэффициенты a 1 и a 0 можно выразить через матан коэффициент корреляции Пирсона , стандартные отклонения и средние значения переменных x и y:

 1 = cor(y, x)σ y /σ x

 0 = ȳ - â 1 x̄

Диагностика и ошибки модели

Чтобы модель была корректной, необходимо выполнение условий Гаусса-Маркова , т.е. ошибки должны быть гомоскедастичны с нулевым математическим ожиданием. График остатков e i = y i - ŷ i помогает определить, насколько адекватна построенная модель (e i можно считать оценкой ε i).
Посмотрим на график остатков в случае простой линейной зависимости y 1 ~ x (здесь и далее все примеры приводятся на языке R ):

Скрытый текст

set.seed(1) n <- 100 x <- runif(n) y1 <- x + rnorm(n, sd=.1) fit1 <- lm(y1 ~ x) par(mfrow=c(1, 2)) plot(x, y1, pch=21, col="black", bg="lightblue", cex=.9) abline(fit1) plot(x, resid(fit1), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Остатки более-менее равномерно распределены относительно горизонтальной оси, что говорит об «отсутствие систематической связи между значениями случайного члена в любых двух наблюдениях». А теперь исследуем такой же график, но построенный для линейной модели, которая на самом деле не является линейной:

Скрытый текст

y2 <- log(x) + rnorm(n, sd=.1) fit2 <- lm(y2 ~ x) plot(x, y2, pch=21, col="black", bg="lightblue", cex=.9) abline(fit2) plot(x, resid(fit2), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



По графику y 2 ~ x вроде бы можно предположить линейную зависимость, но у остатков есть паттерн, а значит, чистая линейная регрессия тут не пройдет . А вот что на самом деле означает гетероскедастичность :

Скрытый текст

y3 <- x + rnorm(n, sd=.001*x) fit3 <- lm(y3 ~ x) plot(x, y3, pch=21, col="black", bg="lightblue", cex=.9) abline(fit3) plot(x, resid(fit3), pch=21, col="black", bg="lightblue", cex=.9) abline(h=0)



Линейная модель с такими «раздувающимися» остатками не корректна. Еще иногда бывает полезно построить график квантилей остатков против квантилей, которые можно было бы ожидать при условии, что остатки нормально распределены:

Скрытый текст

qqnorm(resid(fit1)) qqline(resid(fit1)) qqnorm(resid(fit2)) qqline(resid(fit2))



На втором графике четко видно, что предположение о нормальности остатков можно отвергнуть (что опять таки говорит о некорректности модели). А еще бывают такие ситуации:

Скрытый текст

x4 <- c(9, x) y4 <- c(3, x + rnorm(n, sd=.1)) fit4 <- lm(y4 ~ x4) par(mfrow=c(1, 1)) plot(x4, y4, pch=21, col="black", bg="lightblue", cex=.9) abline(fit4)



Это так называемый «выброс» , который может сильно исказить результаты и привести к ошибочным выводам. В R есть средства для его обнаружения - с помощью стандартизованой меры dfbetas и hat values :
> round(dfbetas(fit4), 3) (Intercept) x4 1 15.987 -26.342 2 -0.131 0.062 3 -0.049 0.017 4 0.083 0.000 5 0.023 0.037 6 -0.245 0.131 7 0.055 0.084 8 0.027 0.055 .....
> round(hatvalues(fit4), 3) 1 2 3 4 5 6 7 8 9 10... 0.810 0.012 0.011 0.010 0.013 0.014 0.013 0.014 0.010 0.010...
Как видно, первый член вектора x4 оказывает заметно большее влияние на параметры регрессионной модели, нежели остальные, являясь, таким образом, выбросом.

Выбор модели при множественной регрессии

Естественно, что при множественной регрессии возникает вопрос: стоит ли учитывать все переменные? С одной стороны, казалось бы, что стоит, т.к. любая переменная потенциально несет полезную информацию. Кроме того, увеличивая количество переменных, мы увеличиваем и R 2 (кстати, именно по этой причине эту меру нельзя считать надежной при оценке качества модели). С другой стороны, стоить помнить о таких вещах, как AIC и BIC , которые вводят штрафы за сложность модели. Абсолютное значение информационного критерия само по себе не имеет смысла, поэтому надо сравнивать эти значения у нескольких моделей: в нашем случае - с разным количеством переменных. Модель с минимальным значением информационного критерия будет наилучшей (хотя тут есть о чем поспорить).
Рассмотрим датасет UScrime из библиотеки MASS:
library(MASS) data(UScrime) stepAIC(lm(y~., data=UScrime))
Модель с наименьшим значением AIC имеет следующие параметры:
Call: lm(formula = y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data = UScrime) Coefficients: (Intercept) M Ed Po1 M.F U1 U2 Ineq Prob -6426.101 9.332 18.012 10.265 2.234 -6.087 18.735 6.133 -3796.032
Таким образом, оптимальная модель с учетом AIC будет такой:
fit_aic <- lm(y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob, data=UScrime) summary(fit_aic)
... Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) -6426.101 1194.611 -5.379 4.04e-06 *** M 9.332 3.350 2.786 0.00828 ** Ed 18.012 5.275 3.414 0.00153 ** Po1 10.265 1.552 6.613 8.26e-08 *** M.F 2.234 1.360 1.642 0.10874 U1 -6.087 3.339 -1.823 0.07622 . U2 18.735 7.248 2.585 0.01371 * Ineq 6.133 1.396 4.394 8.63e-05 *** Prob -3796.032 1490.646 -2.547 0.01505 * Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Если внимательно присмотреться, то окажется, что у переменных M.F и U1 довольно высокое значение p-value, что как бы намекает нам, что эти переменные не так уж и важны. Но p-value - довольно неоднозначная мера при оценки важности той или иной переменной для статистической модели. Наглядно этот факт демонстрирует пример:
data <- read.table("http://www4.stat.ncsu.edu/~stefanski/NSF_Supported/Hidden_Images/orly_owl_files/orly_owl_Lin_9p_5_flat.txt") fit <- lm(V1~. -1, data=data) summary(fit)$coef
Estimate Std. Error t value Pr(>|t|) V2 1.1912939 0.1401286 8.501431 3.325404e-17 V3 0.9354776 0.1271192 7.359057 2.568432e-13 V4 0.9311644 0.1240912 7.503873 8.816818e-14 V5 1.1644978 0.1385375 8.405652 7.370156e-17 V6 1.0613459 0.1317248 8.057300 1.242584e-15 V7 1.0092041 0.1287784 7.836752 7.021785e-15 V8 0.9307010 0.1219609 7.631143 3.391212e-14 V9 0.8624487 0.1198499 7.196073 8.362082e-13 V10 0.9763194 0.0879140 11.105393 6.027585e-28
p-values у каждой переменной - практически нуль, и можно предположить, что все переменные важны для этой линейной модели. Но на самом деле, если присмотреться к остаткам, выходит как-то так:

Скрытый текст

plot(predict(fit), resid(fit), pch=".")



И все же, альтернативный подход основывается на дисперсионном анализе , в котором значения p-value играют ключевую роль. Сравним модель без переменной M.F с моделью, построенной с учетом только AIС:
fit_aic0 <- update(fit_aic, ~ . - M.F) anova(fit_aic0, fit_aic)
Analysis of Variance Table Model 1: y ~ M + Ed + Po1 + U1 + U2 + Ineq + Prob Model 2: y ~ M + Ed + Po1 + M.F + U1 + U2 + Ineq + Prob Res.Df RSS Df Sum of Sq F Pr(>F) 1 39 1556227 2 38 1453068 1 103159 2.6978 0.1087
Учитывая P-значение, равное 0.1087, при уровне значимости α=0.05 мы можем сделать вывод, что нет статистически значимого свидетельства в пользу альтернативной гипотезы, т.е. в пользу модели с дополнительной переменной M.F.

С помощью метода наименьших квадратов.

Регрессионная модель объединяет широкий класс универсальных функций, которые описывают некоторую закономерность. При этом для построения модели в основном используются измеряемые данные, а не знание свойств исследуемой закономерности. Такая модель часто неинтерпретируема, но более точна. Это объясняется либо большим числом моделей-претендентов, которые используются для построения оптимальной модели, либо большой сложностью модели. Нахождение параметров регрессионной модели называется обучением модели .

Недостатки регрессионного анализа: модели, имеющие слишком малую сложность, могут оказаться неточными, а модели, имеющие избыточную сложность, могут оказаться переобученными .

В управлении и планировании существует целый ряд типовых задач, которые можно переложить на плечи компьютера. Пользователь таких программных средств может даже и не знать глубоко математику, стоящую за применяемым аппаратом. Он должен представлять лишь суть решаемой проблемы, готовить и вводить в компьютер исходные данные, интерпретировать полученные результаты. Программным продуктом, который можно использовать для этих целей, является Ms Excel .

Ms Excel - это не просто электронная таблица с данными и формулами для вычислений. Это универсальная система обработки данных, которая может использоваться для анализа и представления данных в наглядной форме.

Одной из чаще всего используемых возможностей Excel является экстраполяция данных - например, для анализа имеющихся фактических данных, оценки тенденции их изменения и получения на этой основе краткосрочного прогноза на будущее. В этом случае используется линейная экстраполяция данных на основе наименьшего квадратичного отклонения - отыскивается линейная зависимость данных, такая, которая бы минимизировала сумму квадратов разностей между имеющимися фактическими данными и соответствующими значениями на прямой линейного тренда (интерполяционной или экстраполяционной зависимости). На основе найденной зависимости можно сделать разумное предположение об ожидаемых будущих значениях изучаемого ряда данных.

Решение задач планирования и управления постоянно требует учета зависимостей одних факторов от других.

Рассмотрим различные методы представления зависимостей.

Если зависимость между величинами удаётся представить в математической форме, то имеем математическую модель.


Математическая модель - это совокупность количественных характеристик некоторого объекта (процесса) и связей между ними, представленных на языке математики.

Математические модели могут быть представлены в виде формул, уравнений или систем уравнений. Например, зависимость времени падения тела на землю от первоначальной высоты описывается формулой . Рассмотрим примеры других способов представления зависимостей между величинами: табличного и графического . По результатам эксперимента мы составили таблицу и нарисовали график (рисунок 1).

Н (м) t (сек)
1,1 1,4 1,6 1,7 1,9 2,1 2,2 2,3 2,5

Рисунок1. Табличное и графическое представление данных.

Мы рассмотрели три способа отображения зависимости величин: функциональный (формула), табличный и графический. Но математической моделью процесса падения тела на землю можно назвать только формулу, т.к. формула универсальна. Таблица и диаграмма (график) констатируют факты, а математическая модель позволяет прогнозировать, предсказывать путем расчетов.

Статистические данные всегда являются приближенными, усредненными. Поэтому они носят оценочный характер. Однако, они верно отражают характер зависимости величин. И еще одно важное замечание: для достоверности результатов, полученных путем анализа статистических данных, этих данных должно быть много.

График искомой функции должен проходить близко к точкам диаграммы экспериментальных данных. Строить функцию так, чтобы ёе график точно проходил через все данные точки (рисунок 2), не имеет смысла. Во-первых, математический вид такой функции может оказаться слишком сложным. Во-вторых, уже говорилось о том, что экспериментальные значения являются приближенными.

Отсюда следуют основные требования к искомой функции:

Она должна быть достаточно простой для использования её в дальнейших вычислениях;

График этой функции должен проходить вблизи экспериментальных точек так, чтобы отклонения этих точек от графика были минимальны и равномерны (рисунок 3).

Рисунок 3. Два варианта построения графической зависимости по экспериментальным данным.

Полученную функцию, график которой приведен на рисунке 3(б), принято называть в статистике регрессионной моделью. Регрессионная модель - это функция, описывающая зависимость между количественными характеристиками сложных систем.

Получение регрессионной модели происходит в два этапа:

1. Подбор вида функции;

2. Вычисление параметров функции.

Чаще всего выбор производится среди следующих функций:

y = ax + b - линейная функция;

y = ax 2 + bx + c - квадратичная функция;

y = aln(x) + b - логарифмическая функция;

y = ae bx - экспоненциальная функция;

y = ax b - степенная функция.

Если Вы выбрали (сознательно или наугад) одну из предлагаемых функций, то следующим шагом нужно подобрать параметры (a ,b, c и пр.) так, чтобы функция располагалась как можно ближе к экспериментальным точкам. Для этого подходит метод наименьших квадратов (МНК). Суть его заключается в следующем: искомая функция должна быть построена так, чтобы сумма квадратов отклонений у - координат всех экспериментальных точек от у - координат графика функции была бы минимальной.

Важно понимать следующее : методом наименьших квадратов по данному набору экспериментальных точек можно построить любую функцию. А вот будет ли она нас удовлетворять, это уже другой вопрос - вопрос критерия соответствия. На рисунке 4 изображены 3 функции, построенные методом наименьших квадратов.

Рисунок 4

Данные рисунки получены с помощью Ms Excel. График регрессионной модели называется трендом (trend - направление, тенденция).

График линейной функции - это прямая. Полученная по методу МНК прямая отражает факт роста заболеваемости от концентрации угарного газа, но по этому графику трудно что - либо сказать о характере этого роста. А вот квадратичный и экспоненциальный тренды - ведут себя очень правдоподобно.

На графиках присутствует ещё одна величина, полученная в результате построения трендов. Она обозначена как R 2 . В статистике эта величина называется коэффициентом детерминированности. Именно она определяет, насколько удачной получится регрессионная модель. Коэффициент детерминированности всегда заключен в диапазоне от 0 до 1. Если он равен 1, то функция точно проходит через табличные значения, если 0, то выбранный вид регрессионной модели неудачен. Чем R 2 ближе к 1, тем удачнее регрессионная модель.

Метод наименьших квадратов используется для вычисления параметров регрессионной модели. Этот метод содержится в математическом арсенале электронных таблиц.

Получив регрессионную математическую модель мы можем прогнозировать процесс путем вычислений. Теперь можно оценить уровень заболеваемости астмой не только для тех значений концентрации угарного газа, которые были получены путем измерений, но и для других значений. Это очень важно с практической точки зрения. Например, если в городе планируется построить завод, который будет выбрасывать в атмосфере угарный газ, то, рассчитав возможную концентрацию газа, можно предсказать, как это отразится на заболеваемости астмой жителей города.

Существуют два способа прогнозов по регрессионной модели. Если прогноз производится в пределах экспериментальных значений независимой переменной (в нашем случае это значение концентрации угарного газа - С), то это называется восстановлением значения .

Прогнозирование за пределами экспериментальных данных называется экстраполяцией.

Имея регрессионную модель, легко прогнозировать, производя расчеты с помощью электронной таблицы.

Табличный процессор дает возможность производить экстраполяцию графическим способом, продолжая тренд за пределы экспериментальных данных. Как это выглядит при использовании квадратичного тренда для С = 7 показано на рисунке 5.

Рисунок 5

В ряде случаев с экстраполяцией надо быть осторожным. Применимость всякой регрессионной модели ограничена, особенно за пределами экспериментальной области.

Список литературы.

1. Новиков Ф.А., Яценко А.Д.. Microsoft Office. С.-П.:БХВ-Петербург, 2002г. стр.449-458

2. Семакин И.Г., Хеннер Е.К. Информатика.11класс. М.: БИНОМ. Лаборатория знаний, 2003г. стр.102-117