Усилитель радиочастоты. Простые усилители высокой частоты (УВЧ) для приемников. Основные функции УРЧ

министерство образования Российской Федерации

Московский физико-технический институт
(государственный университет)

Кафедра радиотехники

Усилитель радиочастоты на биполярном
транзисторе

Лабораторная работа
по курсу Радиотехника

Москва 2003

УДК 621.396.6

Усилитель радиочастоты на биполярном транзисторе.
Лабораторная работа по курсу Радиотехника / Сост.
. – М.: МФТИ, 2003. – 24 с.

© Московский физико-технический институт

государственный университет), 2003

1. Введение 4

2. Каскад на биполярном транзисторе с ОЭ 5

2.1. Принципиальные электрические схемы каскада 5

2.2. Параметры и характеристики каскада 6

2.3. Выбор параметров каскада в многоканальном
усилителе 11

3. Самовозбуждение УРЧ 13

4. Каскодная схема 15

4.1. Принципиальные электрические схемы 15

4.2. Параметры и характеристики схемы 16

5. Экспериментальная оценка выходного и входного
импедансов каскада УРЧ 17

6. Задание 19

6.1. Исследуемые схемы 19

6.2. Расчет каскадов 20

6.3. Измерения и исследования 21

Список литературы 23

1. Введение

Усилители радиочастоты (УРЧ) широко применяют в различных устройствах. Чаще всего их используют в качестве входных блоков радиоприемников для частотной фильтрации полезного сигнала из помех и увеличения его амплитуды. В таких случаях центральная частота спектра сигнала, как правило, существенно превышает ширину спектра и тогда УРЧ выполняет функции активного полосового фильтра. Известно значительное количество схем подобных УРЧ, содержащих разное число усилительных элементов и частотно-избирательных цепей. УРЧ может содержать единственный каскад, а может быть многокаскадным.

УРЧ обычно описывают следующими параметрами и характеристиками:

– резонансной (центральной) частотой усиливаемого участка спектра входного напряжения,

– резонансным коэффициентом усиления https://pandia.ru/text/78/219/images/image003_71.gif" width="23" height="23 src=">

– полосой пропускания https://pandia.ru/text/78/219/images/image005_58.gif" width="40" height="23">


– входным импедансом https://pandia.ru/text/78/219/images/image007_51.gif" width="81" height="21">

– выходным импедансом https://pandia.ru/text/78/219/images/image009_42.gif" width="97" height="21">

– амплитудно-частотной и фазочастотной характеристиками (АЧХ и ФЧХ).

Цель настоящей лабораторной работы – теоретически изучить, рассчитать, собрать на индивидуальной плате и экспериментально исследовать простейшие варианты УРЧ. Это – резонансный каскад на биполярном транзисторе, включенном по схеме с общим эмиттером (ОЭ), каско дная схема на двух транзисторах с одним колебательным контуром и двухкаскадный УРЧ, образованный последовательным соединением названных каскадов.

2. Каскад на биполярном транзисторе с ОЭ

2.1. Принципиальные электрические схемы каскада

На рис. 1а) представлена принципиальная электрическая схема каскада резонансного усилителя на биполярном транзисторе с ОЭ с частично включенным -контуром в качестве коллекторной нагрузки и с последовательным питанием коллекторной цепи. На рис. 1б) дана схема аналогичного каскада с параллельным питанием коллекторной цепи.

https://pandia.ru/text/78/219/images/image012_34.gif" width="21" height="25"> в источник питания , а переменную составляющую через конденсатор направляют мимо источника . Этим уменьшают нежелательную обратную связь между несколькими каскадами УРЧ, питаемыми от единого источника https://pandia.ru/text/78/219/images/image015_28.gif" width="20" height="24">в источник питания . В качестве импеданса используют дроссель (катушку с большой индуктивностью), резистор или последовательное соединение дросселя и резистора.

2.2. Параметры и характеристики каскада

Параметры и характеристики любого радиотехнического устройства, описывающие его свойства, обычно находят путем составления и анализа эквивалентной схемы этого устройства. Для каскада УРЧ используем эквивалентную схему по переменному току, содержащую модели источника сигнала, УЭ и нагрузки. Источник сигнала представим простейшим генератором напряжения с ЭДС и внутренним сопротивлением ..gif" width="125" height="24 src="> где р – коэффициент включения контура, – эквивалентное сопротивление контура, – обобщенная частотная расстройка, https://pandia.ru/text/78/219/images/image024_23.gif" width="17" height="13 src=">1 – собственная добротность контура, – резонансная частота, – сопротивление потерь контура, включенное последовательно с индуктивностью .

Опишем сначала свойства каскада при идеальном транзисторе, у которого -параметры не зависят от частоты и равны: и https://pandia.ru/text/78/219/images/image033_15.gif" width="27" height="28 src=">.jpg" width="397" height="85 src=">

На основании анализа этой схемы нетрудно показать, что у рассматриваемого каскада:

– резонансная частота https://pandia.ru/text/78/219/images/image037_13.gif" width="99" height="43"> (1)

где – крутизна транзистора,

– резонансный коэффициент усиления https://pandia.ru/text/78/219/images/image044_11.gif" width="91" height="23 src=">

– входной импеданс

– выходной импеданс левее точек https://pandia.ru/text/78/219/images/image048_11.gif" width="73" height="23 src=">

– АЧХ и ФЧХ задаются зависимостями модуля и аргумента выражения (1) от частоты.


Вместе с тем у реального транзистора -параметры зависят от частоты. В настоящей работе учтем только так называемое первое приближение этой зависимости, справедливое для частот, не превышающих нескольких значений верхней граничной частоты усиления транзистора по току и имеющее следующий вид:

https://pandia.ru/text/78/219/images/image053_10.gif" width="156" height="45 src=">

https://pandia.ru/text/78/219/images/image055_10.gif" width="157" height="45 src=">

Здесь – постоянная времени прямого https://pandia.ru/text/78/219/images/image058_8.gif" width="128" height="23"> – объемное сопротивление базы, – постоянная времени обратного перехода база-коллектор. Этому приближению соответствует физически наглядная П-образная эквивалентная схема транзистора (схема Джиаколетто). При ее использовании эквивалентная схема каскада приобретает вид, показанный на рис. 3.

В этой схеме в диапазоне частот применения УРЧ можно не учитывать резистор https://pandia.ru/text/78/219/images/image063_9.gif" width="32" height="23 src=">. Так, для транзистора КТ315 на частоте 1 МГц емкость порядка трех пикофарад имеет импеданс 50 кОм, а величина составляет единицы Мом..gif" width="49" height="23">

С учетом сказанного результаты анализа схемы, изображенной на рис. 3, сводятся к следующему.

Выходная проводимость части каскада, расположенной левее линии КЭ, найденная, например, в результате использования теоремы Нортона, получается равной

https://pandia.ru/text/78/219/images/image067_8.gif" width="181" height="47 src=">

Следовательно, выходной контур каскада в данном случае шунтируется резисторным выходным сопротивлением транзистора и выходной емкостью величины которых зависят от параметров транзистора, выходного сопротивления источника сигнала и частоты..gif" width="25" height="23 src=">.gif" width="43" height="21"> имеем порядка десятков кОм и порядка нескольких , а при порядка единиц кОм получаем порядка (долей–единиц) кОм, а https://pandia.ru/text/78/219/images/image063_9.gif" width="32" height="23">.

Из эквивалентной схемы каскада, показанной на рис..gif" width="32" height="23">, равен где – импеданс нагруженного выходного контура https://pandia.ru/text/78/219/images/image080_5.gif" width="136" height="23 src=">.gif" width="29" height="23 src="> Умножив и разделив выражение для на комплексное выражение получаем где ,

Отсюда следует, что входной импеданс каскада между точками Б–Э задается цепью, изображенной на рис. 4а), где https://pandia.ru/text/78/219/images/image090_6.gif" width="19" height="21 src="> – параллельное соединение сопротивлений и https://pandia.ru/text/78/219/images/image094.jpg" width="265" height="97">Рис. 4

Для транзисторов с очень малыми сопротивлениями элементы и практически являются входным резистивным сопротивлением https://pandia.ru/text/78/219/images/image099_5.gif" width="25 height=21" height="21"> всего каскада. В случае больших величин или при наличии дополнительного резистора https://pandia.ru/text/78/219/images/image100_5.gif" width="45 height=15" height="15"> параметры каскада и можно найти соответствующим пересчетом цепи, показанной на рис.4а), в цепь, изображенную на рис. 4б), по формулам

https://pandia.ru/text/78/219/images/image102_5.gif" width="184" height="43 src=">

где

(Попутно заметим, что для частот < относительная расстройка имеет знак минус и величина сопротивления https://pandia.ru/text/78/219/images/image010_42.gif" width="24 height=17" height="17">-контура любого предыдущего каскада входным импедансом последующего каскада резонансная частота и усиление шунтируемого каскада падают, а полоса пропускания расширяется. Вместе с тем, правильно спроектированный каскад должен обеспечивать заданные величины и всего усилителя и максимальное усиление каждого каскада https://pandia.ru/text/78/219/images/image108.jpg" width="396" height="166">

Для обеспечения требуемой полосы пропускания каскада добротность его нагруженного контура должна быть равна https://pandia.ru/text/78/219/images/image111_4.gif" width="61" height="23 src=">.gif" width="20" height="23 src="> должна удовлетворять условию

https://pandia.ru/text/78/219/images/image114_3.gif" width="20" height="21"> и коэффициенты подключения к контуру со стороны выхода УЭ каскада и со стороны входа 2-го каскада соответственно.

Резонансное усиление каскада от его входа до входа 2-го каскада при этом равно

. (3)

Из выражений (2) и (3) при условии находятся требуемые (оптимальные) значения коэффициентов подключения

https://pandia.ru/text/78/219/images/image119_4.gif" width="101" height="28 src="> (4)

где

Каскад с данными коэффициентами подключения иногда называют оптимально согласованным. Величина максимального резонансного усиления согласованного каскада оказывается равной

https://pandia.ru/text/78/219/images/image124_4.gif" width="133" height="43 src=">.gif" width="176" height="43 src=">.gif" width="103" height="24"> – полная емкость контура, обеспечивающая резонансную частоту каскада, равную при индуктивности катушки контура Из этих соотношений получаем следующие формулы для определения величин емкостей и https://pandia.ru/text/78/219/images/image133_3.gif" width="119" height="24">

3. Самовозбуждение УРЧ

Самовозбуждение УРЧ происходит при наличии в нем положительной обратной связи. Существует три канала такой связи. Один из них – это связь каскадов через общий источник питания Для уменьшения данной связи каскады “развязывают“ с помощью фильтрующих элементов и https://pandia.ru/text/78/219/images/image138_3.gif" width="41" height="23 src=">

Рассмотрим условия, при которых самовозбуждение УРЧ возникает именно из-за названной емкости. Впервые они были найдены российским ученым Владимиром Ивановичем Сифоровым еще в эпоху ламповой радиотехники. показал, что одиночный каскад резонансного УРЧ может возбудиться только при наличии в его входном импедансе индуктивной составляющей. Такая составляющая появляется, например, при наличии второго колебательного контура на входе каскада. Аналогичная ситуация возникает в многокаскадном УРЧ, в котором роль входного контура каждого каскада, начиная со второго, играет выходной контур предыдущего каскада.

На рис. 6 дана упрощенная эквивалентная схема каскада с двумя одинаковыми контурами, которые представлены в ней двухполюсниками с импедансами этих контуров (с учетом их шунтирования транзистором). УЭ представлен генератором тока Емкость – это проходная емкость каскада.

Разорвем провод схемы в точке и приложим к каскаду гармоническое входное напряжение https://pandia.ru/text/78/219/images/image144_3.gif" width="15" height="15 src=">, которое вызовет выходное напряжение Под влиянием суммы входного и выходного напряжений через проходную емкость потечет ток обратной связи При больших коэффициентах усиления каскада вкладом входного напряжения можно пренебречь и считать, что https://pandia.ru/text/78/219/images/image148_2.gif" width="29" height="21 src="> Если начальные фазы напряжений и окажутся равными, а амплитуда напряжения связи превысит амплитуду https://pandia.ru/text/78/219/images/image150_2.gif" width="111" height="23">когда также имеем На этой частоте импедансы обоих контуров носят индуктивный характер. Если на резонансной частоте напряжения и находятся в противофазе (сдвиг равен https://pandia.ru/text/78/219/images/image154_2.gif" width="17" height="21"> сдвиг фазы между напряжениями и равен уже сдвиг фазы между векторами и равен и сдвиг между векторами и равен В результате фазовый сдвиг между напряжениями и оказывается равным нулю, то есть обратная связь становится чисто положительной. Если при этом выполняется и второе (амплитудное) условие, то каскад УРЧ превращается в индуктивный трех-точечный https://pandia.ru/text/78/219/images/image160_2.gif" width="21" height="24">

Для устойчивости УРЧ необходимо, чтобы амплитуда напряжения была меньше амплитуды напряжения https://pandia.ru/text/78/219/images/image162_2.gif" width="85 height=25" height="25"> (7)

Таким образом, выражение (7) указывает пути борьбы с самовозбуждением из-за наличия проходной емкости УЭ. Это – соответствующие ограничения величин и

4. Каскодная схема

4.1. Принципиальные электрические схемы

Каскодная схема разработана для повышения устойчивости УРЧ к самовозбуждению, что достигается существенным уменьшением ее проходной емкости по сравнению с минимально достижимой проходной емкостью отдельного УЭ. Примеры каскодных схем с последовательным и параллельным питанием по постоянному току даны на рис. 7.

4.2. Параметры и характеристики схемы

Как видно из этих рисунков, нагрузкой 1-го транзистора, включенного по схеме с ОЭ, по переменному току является входной импеданс 2-го транзистора, включенного по схеме с общей базой (ОБ). Поскольку величина такого импеданса весьма мала по сравнению с выходным импедансом 1-го транзистора ( то 1-й транзистор каскодной схемы практически работает в режиме короткого замыкания на его выходе, а 2-й транзистор – в режиме холостого хода на его входе. Кроме того, имеем

Если теперь рассматривать оба транзистора каскодной схемы как единый УЭ, то при указанных условиях его -параметры связаны с аналогичными параметрами 1-го и 2-го транзисторов следующими соотношениями

https://pandia.ru/text/78/219/images/image171_2.gif" width="32" height="23 src=">.gif" width="55" height="23 src=">

https://pandia.ru/text/78/219/images/image175_2.gif" width="96" height="23 src=">.gif" width="21" height="23"> каскодной схемы, оценивающий степень обратной связи через проходную емкость, оказывается намного меньше, чем у одиночного транзистора, включенного по схеме с ОЭ. Это делает каскодную схему более устойчивой к самовозбуждению.

Кроме того, из-за малости величины входной импеданс каскодной схемы равен 1-го транзистора,
а выходной импеданс равен https://pandia.ru/text/78/219/images/image180_2.gif" width="37" height="21">.gif" width="19 height=21" height="21"> ненагруженного контура. Теоретический расчет этих величин громоздок и неточен, поэтому опишем методику их экспериментальной оценки.

Величины https://pandia.ru/text/78/219/images/image075_6.gif" width="33" height="21 src=">.gif" width="27" height="23 src="> определяемую суммарной емкостью контура + С П, где С П – известная емкость предварительно поставленного в контур навесного конденсатора. Вычисляем величину по формуле

https://pandia.ru/text/78/219/images/image182_2.gif" width="72" height="43 src="> (8)

где .

Изменением емкости С П настраиваем каскад на требуемую резонансную частоту и измеряем его полосу пропускания После этого подключаем емкостную ветвь контура к коллектору транзистора частично, как показано на эквивалентной схеме данного включения на рис. 8а). При этом величины емкостей и выбираем так, чтобы с учетом известной емкости резонансная частота каскада равнялась https://pandia.ru/text/78/219/images/image186_2.gif" width="15" height="16">= (0.2–0.8). В линейном режиме работы каскада измеряем его полосу пропускания резонансная частота 1-го каскада без подключения к нему 2-го каскада равнялась Вычисляем величину

г) считая, что для всех транзисторов h 21Э = 100, найти их начальные токи базы I бн = I кн / h 21Э,

д) выбрать ток, протекающий через делитель напряжения, составленный из резисторов R 1 и R 2, равным I д = (50–100) I бн, найти значения R 1 и R 2, учитывая также условие, что потенциал базы транзистора VT 3 относительно земли должен быть равен (U кэн + 0.6 В),

е) найти величины R р, R б1, R ф, R б2.

6.2.2. Расчет по переменному току:

а) взять в кассе две катушки с равными индуктивностями (40–60) мкГн, измерить их индуктивности на https://pandia.ru/text/78/219/images/image024_23.gif" width="17" height="13 src=">L ;

б) задаться предварительным значением коэффициента частичного подключения 1-го контура p = (0.25–0.33), определяемого соотношением его емкостей;

в) вычислить величины емкостей обоих контуров;

г) выбрать емкость остальных конденсаторов схемы порядка (0.01–1) мкФ, обеспечивая тем самым требуемую малость их импеданса на резонансной частоте.

6.3. Измерения и исследования

6.3.1. Исследование одиночных каскадов

На индивидуальной плате студента собрать каскад на транзисторе с ОЭ, подключив его контур к транзистору полностью, соединив точки 3 и 4 с помощью разделительного конденсатора С р. Собрать каскодную схему, оставив ее вход (точка 6) свободным. Измерить реальные значения I кн и U кэн обоих каскадов и проверить их соответствие заданным величинам. При необходимости добиться соответствия с точностью (10–25)% путем изменения величин R б1, R б2, R 1 и R 2.

Подключив к входу 1-го каскада (точки 1 и 2) генератор гармонического напряжения радиочастоты с амплитудой не более 20 мВ, а к точкам 5 и 2 вольтметр, измерить резонансную частоту этого каскада и проверить ее соответствие расчетной величине https://pandia.ru/text/78/219/images/image018_26.gif" width="20" height="21 src="> на АЧХ и ФЧХ каскада на транзисторе с ОЭ.

6.3.2. Исследование двухкаскадного УРЧ

Используя результаты измерений в п. 6.3.1, материалы
п. 2.3 и формулы (4)–(6), рассчитать параметры согласованного каскада на транзисторе с ОЭ, нагруженного каскодной схемой. При этом требуемую полосу пропускания 1-го каскада задать равной его полосе при полном включении контура и при отсутствии подключения ко 2-му каскаду.

Собрать описанный двухкаскадный усилитель. При наличии его самовозбуждения принять меры к ликвидации генерации.

У устойчивого двухкаскадного усилителя в линейном режиме его работы измерить величины резонансного усиления и полос пропускания 1-го каскада и всего усилителя в целом.

При домашней подготовке к зачету и оформлении отчета:

а) освоить вывод расчетных формул (4), (8), (9)–(11),

б) сопоставить полученные значения всех измеренных величин с теоретически ожидаемыми.

Список литературы

1. Основы радиоэлектроники. – М.: Радио и связь, 1990.
2. , Радиоприемные устройства. В 2-х ч. – М.: Сов. радио, 1961.–1963.

Лабораторная работа

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА

Наименование параметра Значение
Тема статьи: УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА
Рубрика (тематическая категория) Связь

Усиление принимаемых радиосигналов в приемном устройстве осу­ществляется в его преселœекторе, ᴛ.ᴇ. на радиочастоте, и после преоб­разователя частоты - на промежуточной частоте. Соответственно раз­личают усилители радиочастоты (УРЧ) и усилители промежуточной час­тоты (УПЧ). В этих усилителях, вместе с усилением должна обеспечивать­ся частотная избирательность приемника. Для этого усилители содер­жат резонансные цепи: одиночные колебательные контуры, фильтры на связанных контурах, различные типы фильтров сосредоточенной избирательности. Усилители радиочастоты с переменной настройкой обыч­но выполняют с избирательной системой, аналогичной примененной во входной цепи приемника, чаще всœего это одноконтурные избирательные цепи.

В усилителях промежуточной частоты находят применение сложные типы избирательных систем, обладающие АЧХ близкими к прямоугольным, такие, как электромеханические фильтры (ЭМФ), кварцевые фильтры (КФ), фильтры на поверхностных (объемных) акустических волнах (ПАВ, ПОВ) и др.

В большинстве современных приемников используют однокаскадные УРЧ. Реже, при высоких требованиях к избирательности и коэф­фициенту шума, УРЧ могут содержать до трех каскадов.

К числу базовых электрических характеристик усилителœей отно­сятся:

1.Резонансный коэффициент усиления напряжения .

На сверхвысоких частотах (СВЧ) чаще применяют понятие коэффициента усиления по мощнос­ти,где - активная составляющая входной проводимости усилителя; - активная составляющая проводимость нагрузки.

2.Частотная избирательность усилителя показывает относитель­ное уменьшение усиления при заданной расстройке.

Иногда избирательность характеризуют коэффициентом прямоугольности, к примеру, .

3.Коэффициент шума определяет шумовые свойства усилителя.

4.Искажения сигнала в усилителœе : амплитудно-частотные, фазо­вые, нелинœейные.

5.Устойчивость работы усилителя определяется его способностью сохранять в процессе эксплуатации основные характеристики (обычно К о и АЧХ), а также отсутствие склонности к самовозбуждению.

На рис.1-3 приведены основные схемы УРЧ, а на рис.4 схе­ма УПЧ с фильтром сосредоточения избирательности (ФСИ) в виде электромеханического фильтра.

Рис.1. УРЧ на полевом транзисторе

Рис.2. УРЧ на биполярном транзисторе

Рис.3. УРЧ с индуктивной связью с избирательной системой

Рис.4. УПЧ с фильтром сосредоточенной избирательности

В усилителях радиочастоты и промежуточной частоты, в основном применяют два варианта включения усилительного прибора: с общим эмиттером (общим истоком) и каскодную схему включения транзисторов.

На рис.1 приведена схема усилителя на полевом транзисторе с общим истоком. В цепь стока включен колебательный контур L К С К. Контур настраивается конденсатором С К (может применяться для нас­тройки контура варикап или варикапная матрица).

В усилителœе применено последовательное питание стока через фильтр R3C3 . Напряжение смещения на затворе VT1 определяется падением напряжения от тока истока на резисторе R2 . Резистор R1 является сопротивлением утечки транзистора VT1 и служит для передачи напряжения смещения на затвор транзистора.

На рис. 2 приведена аналогичная схема УРЧ на биполярном тран­зисторе. Здесь применено двойное неполное включение контура с транзисторами VT1, VT2,что позволяет обеспечить крайне важно е шунти­рование контура со стороны выхода транзистора VT1и со стороны вхо­да транзистора VT2. Напряжение питания на коллектор транзистора подано через фильтр R4C4 ичасть витков катушки контура L К. Режим по постоянному току и температурная стабилизация обеспечивается с помощью резисторов R1,R2 и R3. Емкость С2 устраняет отрицательную обратную связь по переменному току.

На рис. 3 показана схема с трансформаторной связью контура с коллектором транзистора и автотрансформаторной связью со входом следующего каскада. Обычно, в данном случае, применяют, "удлинœенную" настройку контура (см. лаб. работу №1).

На рис. 4 представлена схема каскада УПЧ с ФСИ, выполненного на микросхеме 265 УВЗ. Микросхема представляет собой каскодный усилитель ОЭ - ОБ.

Усилители промежуточной частоты обеспечивают основное усиление и селœективность приемника по сосœеднему каналу. Их важной особенностью является то, что они работают на фиксированной промежуточ­ной частоте и имеют большое усиление, порядка.

При использовании различных типов ФСИ, требуемое усиление УПЧ достигается применением широкополосных каскадов.

Общим для всœех схем является двойное неполное включение из­бирательной системы. (Полное включение можно рассматривать как частный случай, когда коэффициенты трансформации m и n равны единице). По этой причине для анализа можно использовать одну обобщенную эквивален­тную схему замещения усилителя (см. рис.5).

Рис.5. Обобщенная эквивалентная схема резонансного усилителя

На схеме транзистор со стороны выхода заменен эквивалентным генератором тока с параметрами, и током, а со стороны входа следующего каскада прово­димостью, . Резистор утечки R4 (рис.1) или делитель (рис.2) заменены проводимостью (или).

Обычно сумму проводимостей считают проводимостью нагрузки , ᴛ.ᴇ.

Анализ эквивалентной схемы позволяет получить всœе расчетные соотношения для определœения характеристик каскада .

Так, комплексный коэффициент усиления каскада определяется выражением

эквивалентная резонансная проводимость контура;

Обобщенная расстройка контура.

Из данного соотношения легко определить модуль коэффициента

усиления

и резонансный коэффициент усиления каскада УРЧ

Резонансный коэффициент усиления достигает своего максималь­ного значения при одинаковом шунтировании контура со стороны выхо­да активного прибора и со стороны нагрузки (входа следующего каскада), ᴛ.ᴇ. когда

Приведенные соотношения позволяют получить уравнение резонан­сной кривой усилителя. Так, при малых расстройках, . Откуда, полоса пропускания УРЧ поуровню 0,707 (- 3дБ) равна

Резонансный коэффициент усиления одноконтурного каскада УПЧ такой же, как и у одноконтурного УРЧ

Для УПЧ с двухконтурным полосовым фильтром резонансный коэф­фициент усиления каскада определяется выражением

где - фактор связи между контурами, а - коэффициент связи между контурами.

Коэффициент усиления (по напряжению) УПЧ с любым ФСИ при сог­ласовании фильтра на входе и выходе должна быть рассчитан по формуле

Здесь, - характеристические (волновые) сопротивления ФСИ по входу и выходу соответственно;

Коэффициент передачи фильтра в полосœе прозрачности (пропускания).

В том случае, в случае если известно затухание фильтра в полосœе проз­рачности вдецибелах, то

Коэффициенты включения m и n вычисляются из условия согласо­вания фильтра на входе и выходе

Резонансная характеристика каскада УПЧ с ФСИ полностью опреде­ляется кривой изменения коэффициента передачи ФСИ от частоты. Отдельные точки резонансной кривой ФСИ задаются в справочниках.

Коэффициент усиления избирательного усилителя не должен превышать величины коэффициента устойчивого усиления. В общем случае, можно оценить из выражения

В случае если в качестве усилительного элемента используется каскодная схема, то крайне важно подставить соответствующие значения проводимостей для каскодной схемы к примеру, для схемы ОЭ – ОБ

В случае использования полевых транзисторов активной составляющей проводимости можно пренебречь и

УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА - понятие и виды. Классификация и особенности категории "УСИЛИТЕЛИ РАДИОЧАСТОТЫ И ПРОМЕЖУТОЧНОЙ ЧАСТОТЫ РАДИОПРИЕМНОГО УСТРОЙСТВА" 2017, 2018.

УРЧ представляют собой активные частотно-избирательные каскады приемников, работающих на фиксированной частоте или в диапазоне частот. Они применяются для обеспечения высокой чувствительности радиоприемных устройств за счет предварительного усиления сигнала и его частотной селекции.

Основные требования и качественные показатели

1. Резонансный коэффициент усиления по напряжению

Или по мощности,

где G вх, G н - активные составляющие проводимостей входа и нагрузки усилителя.

2. Частотная избирательность - главным образом по зеркальному каналу супергетеродинных приемников (
).

3. Коэффициент шума УРЧ , который в значительной мере определяет способность приемника воспроизводить полезную информацию при малых уровнях принимаемого сигнала. С точки зрения минимального уровня шумов достаточно, чтобы коэффициент усиления по мощности УРЧ был на уровне 10-100, поэтому требуемое число каскадов обычно не превышает двух.

4. Устойчивость , характеризует отсутствие самовозбуждение усилите­ля.

Кроме того УРЧ по своим показателям должны обеспечивать усиление сигналов в определенном динамическом диапазоне с искажениями, не превышающими заданного уровня.

Учитывая, что УРЧ работает в режиме усиления слабых сигналов, бу­дем считать усилительный прибор линейным активным 4-х полюсником.

Резонансный усилительный каскад умеренно высоких частот

В диапазоне умеренно высоких частот (f < 300 МГц) для описания свойств усилительных каскадов удобно использовать систему Y -параметров, в которой уравнение линейного 4-полюсника записывается в виде (5.1)

(5.1)

где , и,- напряжения и токи на входе и выходе 4-полюсника соответственно,

- параметры в режиме короткого замыкания по входу и выходу 4-полюсника.

Наиболее общая схема резонансного каскада может быть представлена в виде (Рис. 5.1).

На рисунке представлена схема резонансного усилителя, в которой к контуру L C частично подключены как выход транзистора VT 1 , так вход следующего каскада на транзисторе VT 2 . В обоих случаях применяется автотрансформаторная связь. Однако в таком усилителе указанные связи могут быть реализованы и другим известным способом, например, трансформаторным.

Элементы R 1 , R 2 , ,применяются для задания режима работыактивного элемента VT 1 по постоянному току. Необходимая фильтрация по питанию осуществляется фильтром R ф , C ф . Расчет этих элементов производится аналогично, как это делается для апериодических усилителей. Поэтому вопросы задания рабочей точки резонансных усилителей здесь не рассматриваются.

Независимо от типа связи усилительного прибора с резонансным контуром резонансный усилитель можно представить в виде следующей эквивалентной схемы (Рис. 5.2).

Из представленной эквивалентной схемы следует, что

(5.2)

При использовании двойной автотрансформаторной связи проводимость нагрузки может быть представлена как

, (5.3)

где,
.

Коэффициент усиления по напряжению можно получить, если использовать выражения (5.1) и (5.2). С учетом этих выражений можно получить

(5.4)

Из последнего выражения можно получить

(5.5)

Откуда получаем

, (5.6)

где - полная эквивалентнаяпроводимость контура.

Резонансные свойства каскада определяются частотной характеристикой проводимости
, а последняя соответствует резонансной характеристике колебательного контура LC . Эквивалентное сопротивление колеба­тельного контура, включенного в коллекторную цепь транзистора можно представить следующим образом

Полное эквивалентное сопротивление контура
можно представить

, (5.8)

где
-обобщенная расстройка контура.

Коэффициент усиления каскада на резонансной частоте можно представить как

, (5.9)

где
.

- коэффициент трансформации от выхода первого активного элемента до входа следующего.

С учетом этого для резонансного каскада получим следующее выраже­ние для коэффициента усиления

(5.10)

По структуре полученная формула соответствует формуле для опреде­ления коэффициента усиления апериодического каскада, только в качестве нагрузки в последнем используется резонансный контур.

Для повышения чувствительности и реальной селективности гетеродинного приемника входная цепь должна обеспечивать близкий к единице коэффициент передачи мощности в рабочем диапазоне частот и как можно большее ослабление внедиапазонных сигналов. Все это - свойства идеального полосового фильтра, поэтому и выполнять входную цепь надо в виде фильтра.

Часто применяемая одноконтурная входная цепь хуже всего отвечает предъявляемым требованиям. Для увеличения селективности надо повышать нагруженную добротность контура, ослабляя его связь с антенной и смесителем или УРЧ.

Но тогда почти вся мощность принимаемого сигнала будет расходоваться в контуре и лишь малая ее часть пройдет в смеситель или УРЧ. Коэффициент передачи мощности получится низким. Если же сильно связать контур с антенной и смесителем, упадет нагруженная добротность контура и он будет мало ослаблять сигналы соседних по частоте станций.

А ведь рядом с любительскими диапазонами работают и очень мощные радиовещательные станции.

Одиночный входной контур в качестве преселектора можно использовать на низкочастотных KB диапазонах, где уровни сигналов достаточно велики, в простейших гетеродинных приемниках. Связь с антенной следует сделать регулируемой, а сам контур перестраиваемым, как показано на рис. 1.

В случае помех от мощных станций можно ослабить связь с антенной, уменьшая емкость конденсатора С1, тем самым увеличив селективность контура и одновременно увеличив потери в нем, что эквивалентно включению аттенюатора. Суммарную емкость конденсаторов С2 и СЗ выбирают около 300...700 пФ, данные катушки зависят от диапазона.

Рис.1. Одноконтурная входная цепь.

Значительно лучшие результаты дают полосовые фильтры, согласованные по входу и выходу. В последние годы наметилась тенденция применять переключаемые полосовые фильтры даже на входе широкодиапазонных профессиональных связных приемников. Используют октавные (редко), полуоктавные и четвертьоктавные фильтры.

Отношение верхней частоты их полосы пропускания к нижней равно соответственно 2; 1,41(корень из 2) и 1,19 (корень четвертой степени из 2). Разумеется, чем узкополоснее входные фильтры, тем помехозащищенность широкодиапазонного приемника выше, но число переключаемых фильтров значительно возрастает.

Для приемников, рассчитанных только на любительские диапазоны, число входных фильтров равно числу диапазонов, а их полоса пропускания выбирается равной ширине диапазона, обычно с запасом в 10...30%.

В трансиверах полосовые фильтры целесообразно устанавливать между антенной и антенным переключателем прием/передача. Если усилитель мощности трансивера достаточно широкополосен, как, например, в случае транзисторного усилителя, его выходной сигнал может содержать много гармоник и других внедиапазоиных сигналов. Полосовой фильтр будет способствовать их подавлению.

Требование близкого к единице коэффициента передачи мощности фильтра в этом случае особенно важно. Элементы фильтра должны выдерживать реактивную мощность, в несколько раз превосходящую номинальную мощность передатчика трансивера.

Характеристическое сопротивление всех диапазонных фильтров целесообразно выбрать одинаковым и равным волновому сопротивлению фидера 50 или 75 Ом.


Рис.2. Полосовые фильтры: а - Г-образный; б - П-образный

Классическая схема Г-образного полосового фильтра дана на рис.2,а. Расчет его чрезвычайно прост. Сначала определяется эквивалентная добротность Q = fo/2Df, где fo - средняя частота диапазона, 2Df - полоса пропускания фильтра. Индуктивности и емкости фильтра находятся по формулам:

где R - характеристическое сопротивление фильтра.

На входе и выходе фильтр должен нагружаться сопротивлениями, равными характеристическому, ими могут быть входное сопротивление приемника (или выходное передатчика) и сопротивление антенны.

Рассогласование до 10...20% практически мало сказывается на характеристиках фильтра, но отличие нагрузочных сопротивлений от характеристического в несколько раз резко искажает кривую селективности, в основном в полосе пропускания.

Если сопротивление нагрузки меньше характеристического, ее можно подключить автотрансформаторно, к отводу катушки L2. Сопротивление уменьшится в k2 раз, где k - коэффициент включения, равный отношению числа витков от отвода до общего провода к полному числу витков катушки L2.

Селективность одного Г-образного звена может оказаться недостаточной, тогда два звена соединяют последовательно. Соединять звенья можно либо параллельными ветвями друг к другу, либо последовательными. В первом случае получается Т-образный фильтр, во втором - П-образный.

Элементы L и С соединенных ветвей объединяются. В качестве примера на рис.2,б показан П-образный полосовой фильтр. Элементы L2C2 оетались прежними, а элементы продольных ветвей обьединились в индуктивность 2L и емкость С1/2. Легко видеть, что частота настройки получившегося последовательного контура (так же, как и остальных контуров фильтра) осталась прежней и равной средней частоте диапазона.

Часто при расчете узкополосных фильтров значение емкости продольной ветви С1/2 получается слишком маленьким, а индуктивности - слишком большим. В этом случае продольную ветвь можно подключить к отводам катушек L2, увеличив емкость в 1/k2 раз, а индуктивность во столько же раз уменьшив.


Рис.3. Двухконтурный фильтр.

Встотных фильтрах бывает удобно использовать только параллельные колебательные контура, соединенные одним выводом с общим проводом.

Схема двухконтурного фильтра с внешней емкостной связью показана на рис.3. Индуктивность и емкость параллельных контуров рассчитываются по формулам (1) для L2 и С2, а емкость конденсатора связи должна составить C3=C2/Q.

Коэффициенты включения выводов фильтра зависит от требуемого входного сопротивления Rвх и характеристического сопротивления фильтра R: k2=Rвх/R. Коэффициенты включения с двух сторон фильтра могут быть и разными, обеспечивая согласование с антенной и входом приемника или выходом передатчика.

Для увеличения селективности можно включить по схеме рис.3 три и более одинаковых контуров, уменьшив емкости конденсаторов связи СЗ в 1,4 раза.


Рис.4. Селективность трехконтурного фильтра.

Теоретическая кривая селективности трехконтурного фильтра приведена на рис.4. По горизонтали отложена относительная расстройка x=2DfQ/fo, а по вертикали - ослабление, вносимое фильтром.

В полосе прозрачности (x<1) ослабление равно нулю, а коэффициент передачи мощности - единице. Это понятно, если учесть, что теоретическая кривая построена для элементов без потерь, имеющих бесконечную конструктивную добротность.

Реальный фильтр вносит некоторое ослабление и в полосе пропускания, что связано с потерями в элементах фильтра, главным образом в катушках. Потери в фильтре уменьшаются с увеличением конструктивной добротности катушек Q0. Например, при Q0 = 20Q потери даже в трехконтурном фильтре не превышают 1 дБ.

Ослабление за пределами полосы пропускания прямо зависит от числа контуров фильтра. Для двухконтурного фильтра ослабление равно 2/3 указанного на рис.4, а для одноконтурной входной цепи - 1/3. Для П-образного фильтра рис.3,б пригодна кривая селективности рис.4 без всякой коррекции.


Рис.5. Трехконтурный фильтр - практическая схема.

Практическая схема трехконтурного фильтра c полосой пропускания 7,0...7,5 МГц и его экспериментально снятая характеристика показаны на рис.5 и 6 соответственно.

Фильтр рассчитан по описанной методике для сопротивления R=1,3 кОм, но был нагружен на входное сопротивление смесителя гетеродинного приемника 2 кОм. Селективность немного возросла, но появились пики и провалы в полосе пропускания.

Катушки фильтра намотаны виток к витку на каркасах диаметром 10 мм проводом ПЭЛ 0,8 и содержат по 10 витков. Отвод катушки L1 для согласования с сопротивлением фидера антенны 75 Ом сделан от второго витка.

Все три катушки заключены в отдельные экраны (алюминиевые цилиндрические «стаканчики» от девятиштырьковых ламповых панелек). Настройка фильтра проста и сводится к настройке контуров в резонанс подстроечниками катушек.


Рис.6. Измеренная кривая селективности трехконтурного фильтра.

Особо следует остановиться на вопросах получения максимальной конструктивной добротности катушек фильтров. Не следует стремиться к особой миниатюризации, поскольку добротность растет с увеличением геометрических размеров катушки.

По этой же причине нежелательно использовать слишком тонкий провод. Серебрение провода дает ощутимый эффект лишь на высокочастотных KB диапазонах и на УКВ при конструктивной добротности катушки более 100. Литцендрат целесообразно применять лишь для намотки катушек диапазонов 160 и 80 м.

Меньшие потери в посеребренном проводе и литцендрате связаны с тем, что высокочастотные токи не проникают в толщу металла, а протекают лишь в тонком поверхностном слое провода (так называемый скин-эффект).

Идеально проводящий экран не снижает добротности катушки и к тому же устраняет потери энергии в окружающих катушку предметах. Реальные экраны вносят некоторые потери, поэтому диаметр экрана желательно выбирать равным не менее 2-3 диаметров катушки.

Экран следует выполнять из хорошо проводящего материала (медь, несколько хуже алюминий). Недопустима окраска или лужение внутренних поверхностей экрана.

Перечисленные меры обеспечивают исключительно высокую добротность катушек, реализуемую, например, в спиральных резонаторах.

В диапазоне 144 МГц она может достигать 700...1000. На рис.7 показана конструкция двухрезонаторного полосового фильтра диапазона 144 МГц, рассчитанного на включение в 75-омную фидерную линию.

Резонаторы смонтированы в прямоугольных экранах размерами 25X25X50 мм, спаянных из листовой меди, латуни или пластинок двустороннего фольгированного стеклотекстолита.

Внутренняя перегородка имеет отверстие связи размером 6X12,5 мм. На одной из торцевых стенок закреплены воздушные подстроечные конденсаторы, роторы которых соединены с экраном.

Катушки резонатора бескаркасные. Они выполнены из посеребренного провода диаметром 1,5...2 мм и имеют по 6 витков диаметром 15 мм, равномерно растянутых на длину около 35 мм. Один вывод катушки припаивается к статору подстроечного конденсатора, другой - к экрану.

Отводы ко входу и выходу фильтра сделаны от 0,5 витка каждой кагушки. Полоса пропускания настроенного фильтра немногим более 2 МГц, вносимые потери исчисляются десятыми долями децибела Полосу пропускания фильтра можно регулировать, изменяя размеры отверстия связи и подбирая положение отводов катушек.


Рис.7. Фильтр на спиральных резонаторах.

На более высокочастотных УКВ диапазонах катушку целесообразно заменить прямым отрезком провода или трубки, тогда спиральный резонатор превращается в коаксиальный четвертьволновый резонатор, нагруженный емкостью.

Длину резонатора можно выбрать около л/8, а недостающая до четверти длины волны длина компенсируется подстроечной емкостью.

В особо тяжелых условиях приема на KB диапазонах входной контур или фильтр гетеродинного приемника делают узкополосным, перестраиваемым. Для получения высокой нагруженной добротности и узкой полосы связь с антенной и между контурами выбирается минимальной, а для компенсации возросших потерь применяется УРЧ на полевом транзисторе.

Его цепь затвора мало шунтирует контур и почти не снижает его добротности. Биполярные транзисторы в УРЧ устанавливать нецелесообразно по причине их низкого входного сопротивления и значительно большей нелинейности.

Схема УРЧ

Схема усилителя радиочастоты (УРЧ) показана на рис.8. Двухконтурный перестраиваемый полосовой фильтр на его входе обеспечивает всю требуемую селективность, поэтому в цепи стока транзистора включен неперестраиваемый контур L3C9 малой добротности, зашунтированный резистором R3.

Этим резистором подбирают коэффициент усиления каскада. Ввиду малого усиления нейтрализации проходной емкости транзистора не требуется.


Рис.8. Усилитель радиочастоты.

Контур в цепи стока можно использовать и для получения дополнительной селективности, если шунтирующий резистор исключить, а для снижения усиления сток транзистора подключить к отводу контурной катушки.

Схема такого УРЧ для диапазона 10 м показана на рис.9. Он обеспечивает чувствительность приемника лучше 0,25 мкВ В усилителе можно применить двухзатворные транзисторы КП306, КП350 и КП326, имеющие малую проходную емкость, что способствует устойчивости работы УРЧ с резонансной нагрузкой.


Рис.9. УРЧ на двухзатворном транзисторе.

Режим транзистора устанавливают подбором резисторов R1 и R3 так, чтобы ток, потребляемый от источника питания, составлял 4... 7 мА. Усиление подбирается перемещением отвода катушки L3 и при полном включении катушки достигает 20 дБ.

Контурные катушки L2 и L3 намотаны на кольцах К10X6X4 из феррита 30ВЧ и имеют по 16 витков провода ПЭЛШО 0,25. Катушки связи с антенной и смесителем содержат по 3-5 витков такого же провода. В усилитель легко ввести сигнал АРУ, подав его на второй затвор транзистора. При снижении потенциала второго затвора до нуля усиление уменьшается на 40...50 дБ.

Литература: В.Т.Поляков. Радиолюбителям о технике прямого преобразования. М. 1990г.

Панасюк Анатолий Георгиеаич
Должность: преподаватель
Учебное заведение: ГБПОУ КК "Краснодарский колледж электронного приборостроения"
Населённый пункт: Краснодар
Наименование материала: Радиоприёмные устройства
Тема: Усилители радиочастоты
Дата публикации: 05.01.2018
Раздел: среднее профессиональное

Усилители радиотракта

Глава 3

Усилители радиотракта

3.1 Усилители радиочастоты (УРЧ), функции, основные

качественные показатели.

3.1.1 Схемы УРЧ, устойчивость УРЧ.

Основные функции УРЧ.

1. Усиление принимаемых сигналов на несущей частоте, необходимое для

улучшения реальной чувствительности РПрУ.

2. Обеспечение селективности (избирательности) РПрУ к сильным помехам,

и селективности по побочным каналам приёма (зеркальный канал, прямой и

промежуточный канал).

Основные качественные показатели.

1. Коэффициент усиления напряжения

Кu=Uвыx/Uвх; K=20 lgKu

Для многокаскадного УРЧ общий коэффициент усиления

K1xK2…..Kn

2. Селективность - показывает, насколько уменьшается коэффициент

усиления на частоте мешающего сигнала

Se=Kо/K; Se==20lg Ко/К

3. Полоса пропускания характеризует широкополосность УРЧ.

4. Коэффициент перекрытия диапазона (ширина диапазона)

5. Устойчивость работы - характеризует способность УРЧ сохранять

основные показатели при изменении внешних и внутренних факторов среды

(температуры, изменение напряжения питания).

Рис. 3.1 Обобщённая схема УРЧ

3.1.2 Анализ обобщённой схемы резонансного одноконтурного УРЧ.

На вход УП (усилительного прибора) поступает сигнал, который необходимо

выходному

электроду

колебательного контура (Lк,Ск) . Выходной сигнал снимается с контура и

подаётся на вход следующего каскад, проводимость которого равна Y

общем случае колебательный контур подключается к выходному электроду УП

и нагрузке частично, с коэффициентом включения ml и m2. коэффициент

включения называется отношение части напряжения, снимаемое с контура

(Uвых) к полному напряжению на контуре (U

В общем случае резонансный коэффициенте усиления равен

где ml m2 - коэффициент включения

S - крутизна характеристики усилительного прибора

Резонансное сопротивление контура

3.1.3 Принципиальная схема УРЧ с автотрансформаторным включением

контура и автотрансформаторной связью со следующим каскадом.

Рис. 3.2 Принципиальная схема УРЧ

Усилители радиотракта

поступлении

напряжения

частотой

резонансной

коллекторной

транзистора

появляется переменный ток l

Протекая через резонансный контур (Lк, Ск, Сп)

переменная составляющая коллекторного тока создаёт на нём падение

напряжения Un. Часть этого напряжения снимается с отвода контурной катушки

Lк, и подаётся через конденсатор связи Сб на следующий каскад (базу

транзистора УТ2). База биполярного транзистора VТ2 подключена к части

выходной резонансной цепи Lк Ск, во избежание её сильного шунтирования

малых (1500 - 2500 Ом) входным сопротивлением транзистора. Коэффициент

включения m2, характеризующий степень связи базы транзистора VТ2 с

резонансной цепью Lк Ск всегда значительно меньше единицы. Коллектор

транзистора VT1 подключён к части контура. Неполная связь коллектора с

контуром Lк, Ск,Сп применяется для ослабления шунтирования контура

выходной цепью транзистора и для обеспечения устойчивой работы каскада.

3.1.4 Устойчивость РУ.

При определённых условиях РУ может самовозбуждаться и работать как

автогенератор с частотой, близкой к его резонансной. Это связано с наличием

внутренней обратной связи через транзистор (внутритранзисторная емкостная

ОС за счёт ёмкости перехода коллектор-база).

При создании усилителя важно, чтобы он не только не самовозбуждался,

но и с необходимым запасом обеспечивалась устойчивость при воздействии

различных

дестабилизирующих

факторов

климатических механических воздействий, нагрев УП) такой запас достигается

при выполнении условия:

где: Ко - резонансный коэффициент усиления определяемый из формулы

выше; Куст- устойчивый коэффициент усиления каскада.

где: S - крутизна транзистора

Ск - внутритранзисторная ёмкость ОС, равная ёмкости перехода коллектор

3.1.5 Меры повышения устойчивости РУ.

1. ДЛЯ УРЧ с фиксированной настройкой с целью повышения

устойчивости применяется нейтрализация ёмкости Ск.

Схема УРЧ с нейтрализацией

Рис. 3.3 Схема УРЧ с нейтролизацией

действия

заключается

введении

дополнительной

электрической цепи, по своим свойствам являющейся противоположной

проводимости ОС. Введение последовательной цепочки Rn и Сп должно быть

таким, чтобы обеспечивался поворот фазы напряжения нейтрализации на

180° относительно напряжения ОС. Часто для нейтрализации используется

только одна ёмкость.

2. УРЧ с транзистором, включенными по схеме с ОБ.

В таких УРЧ область базы транзистора при соединении её с общей точкой

схемы резко ослабляет емкостную связь между входом и выходом усилителя,

тем самым повышая его устойчивость.

Рис. 3.4 Схема УРЧ с ОБ

Усилители радиотракта

устойчивость

транзистор

работоспособен в более широкой полосе частот. Связь транзистора с

выходным контуром автотрансформаторная, с входным контуром через

емкостной

делитель,

входного

источником

трансформаторная,

выходного

последующим

каскадом

автотрансформаторная. УРЧ используется в приёмниках УКВ.

4. Каскадная схема УРЧ. Такой схемой называется схема, в которой

используется две различных схемы включения усилительных приборов.

Наиболее распространена комбинация схем включения ОЭ - ОБ.

Рис. 3.5 Каскодная схема УРЧ

Каскодные схемы сочетают в себе высокие усилительные свойcтвa схемы

включения

значительное

выходное

сопротивление

устойчивостью схемы с ОБ.. Каскадные усилители обеспечивают более

высокое устойчивое усиление, чем у двух каскадного усилителя на этих же

транзисторах.

Транзистор VT1 первого каскада каскадного усилителя включен по схеме

обеспечивает

достаточно

сопротивление

усилителя; при этом селективность (избирательность) цепи источника сигнала

снижается незначительно. Нагрузкой коллекторной цепи VT1 служит малое

входное сопротивление второго каскада каскадного усилителя, включённого

по схеме с ОБ. По этой причине первый каскад усилителя обеспечивает

усиление сигнала практически только по мощности, а второй по напряжению;

в целом усилитель обеспечивает высокое усиление и по мощности и по

напряжению. Применяется в РПУ метрового диапазона (УКВ).

3.2 Полосовые усилители.

Полосовыми усилителями называются усилители АЧХ которых близка к

прямоугольной.

Вследствие

полосовые

усилители

обеспечивают

равномерное

усиление

пропускания

ослабление

расположенных

резонансной

мешающих

сигналов.

применяются

качестве

усилителей

промежуточной

частоты(УПЧ) РПрУ, обеспечивая ослабление влияния близко расположенных

мешающих

сигналов

соседних

Полосовые

усилители

большинстве случаев, не перестраиваются, Т.е. предназначены для работы

на одной частоте настройки.

Рис. 3.6 АЧХ Полосового усилителя

Лучшая форма АЧХ ПУ достигается за счёт использования двухконтурных

(многоконтурных)

резонансных

специальных

фильтров ФСС. Они представляют собой избирательные системы с высокой

крутизной спада, коэффициент передачи за границей полосы пропускания.

практике

применяются

различные

многоконтурные и многозвенные, электромеханические, пьезоэлектрические,

пьезомеханические, пьезокерамические.

3.2.1 Схема УПЧ на двухсвязных контурах.

Рис. 3.7 Схема УРЧ с ДПФ

Усилители радиотракта

Рис. 3.8 Ачх УРЧ с ДПФ

При критической связи между контурами когда В=l АЧХ имеет один

максимум, уплощенную вершину и хорошую равномерность в полосе пр

опускания при В> 1 АЧХ получается с двумя боковыми максимумами. При

увеличении

увеличивается

пропускания

расширяется и вместе с тем увеличивается неравномерность в полосе

пропускания. При В < 1 АЧХ имеет один максимум но полоса пропускания

меньше чем при В= 1. Таким образом наивыгоднейшей связью между

контурами является критической В= 1.

полосового

усилителя

сравнению

одноконтурного РУ отличается более прямоугольной формой, что говорит о

лучшей селективности заданной полосы частот.

3.2.2 УПЧ с фильтром сосредоточенной селекции.

Рис.3.9 Схема УРЧ с ФСС на LC-звеньях

дискретных

элементах

элементах

колебательных контуров, связь между которыми в основном емкостная, но

может быть индуктивной и комбинированной. Приведённая схема УПЧ с ФСС

двухконтурных

согласованных

волновому

сопротивлению

емкостной

контурами.

транзистором

автотрансформаторная

последующим

каскадом

трансформаторная. Степень связи с ФСС выбирают исходя из согласования

выходного сопротивления VТ1 и входного сопротивления последующего

каскада. Для ослабления магнитных связей между катушками их обычно

помещают в экран. Внешние контуры L 1 С 1 и L3 C3 являются полузвеньями

ФСС. Количество звеньев в ФСС определяется количеством конденсаторов

3.2.3 УПЧ с Пьезокерамическим фильтром

габариты,

изготовлении,

обладают

затуханием в полосе пропускания и высоким коэффициентом прямоугольности

пропускания, что требует включения перед фильтром резонансного контура

обеспечивающего согласование выходного сопротивления транзистора с

вxoдным сопротивлением фильтра.

Рис. 3.10 УПЧ с ПКФ

В качестве примера приведём данные пьезокерамического фильтра типа

Ф П1П - 23 на промежуточную частоту 465 кГц. Полоса пропускания по

уровню 0,5 (вдб) - 9,5 кГц, селективность при расстройке:±9кГц - 40 дб;

вносимое затухание в полосе пропускания не более 9,5 дб Rвх = Квых = 2 кОм.

1. В УРЧ (УВЧ) приёмников наиболее широко используются одноконтурные

транзисторные

усилители.

устойчивое

усиление

обеспечивают

каскадные УРЧ.

2. В УПЧ с распределённой селекцией большая часть каскадов резонансная

Усилители радиотракта

результирующая

определяется

произведением

отдельных каскадов. В УПЧ с сосредоточенной селекцией результирующая

АЧХ определяется в основном АЧХ ФСС являющегося нагрузкой одного из

каскадов УПЧ (смесителя) остальные каскады могут быть апериодически или

широкополосными.

3. В качестве ФСС в УПЧ находят применение фильтры на дискретных LC

Звеньях, электромеханические, кварцы и пьезокерамические.

3.3 Схемы, конструкции и характеристики усилителей

радиосигналов

На умеренно высоких частотах используют УРЧ на биполярных (БТ) и

полевых (ПТ) транзисторах с высокими граничными частотами. Современная

интегральная

технология

позволяет

изготавливать

полупроводниковые

гибридные интегральные микросхемы (ИМС) усилителей радиосигналов (УРЧ

и УПЧ) с внешними избирательными цепями (колебательными контурами и

фильтрами). Здесь возможно также использование интегральных активных RС-

фильтров, однако их частотные свойства ограничены. Поэтому иногда активные

RC-yстройства используют одновременно с фильтрующими системами с

сосредоточенными параметрами (контурами, пьезокерамическими и другими

фильтрами). В этом случае они выполняют роль усилителей и устройств

Рис. 3.11 Схемы УРЧ с использованием полевого транзистора ИМС

согласования.

приведена

транзисторе

трансформаторным

включением

колебательного

Колебательный контур перестраивается варикапом, на который подается

управляющее напряжение смещения Uу. Требуемая устойчивость каскада

достигается

коэффициента

усиления,

меньшего

коэффициенту устойчивого усиления.

На рис. 3.11б, а дана принципиальная схема ИМС, предназначенной для

УРЧ, работающих на частотах до 150 МГц, на рис. 3.11, б - вариант ее

применения. Схема содержит каскодный усилитель (ОЭ-ОБ) на транзисторах

VT2 и VT1 , что обеспечивает высокую устойчивость. С помощью транзистора

VT3 осуществляется регулировка усиления ИМС, для чего необходимо

изменять управляющее напряжение Uу на выводе 9 , что приводит к

изменению

эмиттерного

величины

напряжения

следовательно, смещения на эмиттере VT2. С помощью диодов VD1, VD2,

резисторов R1-R3 (температурно-зависимого делителя базового смещения) и

цепей обратной связи достигается высокая стабильность параметров ИМС: в

интервале температур от -60 до +70°С изменение Y 21 | не превышает ±25

%. Усиление ИМС на частоте 10 МГц не менее 200 (сопротивление нагрузки

100 Ом), напряжение питания 6,3 В (± 10 %), потребляемая мощность 20 мВт.

Для ИМС характерен относительно низкий уровень шумов: на частоте 180МГц

коэффициент шума не более 7 дБ.

приведена

резонансного

применяться на частотах до 60 МГц. Она содержит ИМС 175УВ4, основу

которой составляет каскодный усилитель с дифференциальным каскадом.

Входной сигнал с контура входной цепи подается на базу транзистора VT4 ,

включенного но схеме с ОЭ, и усиливается далее транзистором VT3 (ОБ)

Такое включение позволяет повысить устойчивость усилителя и увеличить

Рис. 3.12 Принципиальная схема УРЧ на ИМС 175УВ4 работающего в

диапазоне частот

Усилители радиотракта

его выходное сопротивление, что допускает полное включение нагрузочного

Регулировка

усиления

осуществляться

управляющего напряжения: Uу на базу транзистора VT2 дифференциального

каскада. Так как ток эмиттера транзистора VT3 остается постоянным, то

входное сопротивление УРЧ в процессе регулировки усиления не изменяется,

что стабилизирует АЧХ усилителя в широком диапазоне изменения его

усиления.

выходной

перестраиваются

варикапов, входящих в состав варикапной матрицы. Для уменьшения влияния

нелинейных эффектов в каждом из контуров используют по два варикапа,

включенных последовательно по переменному току, что позволяет уменьшить

влияние нелинейностей четных порядков.

На СВЧ находят применение УРЧ на СВЧ-транзисторах (до сантиметровых

волн включительно), СВЧ-электронных лампах (метровый и дециметровый

диапазоны), ЛБВ, приборах с "отрицательным" сопротивлением, а также

параметрические и квантовые усилители.

Транзисторные усилители в последнее время широко распространены в

СВЧ-технике. Наряду с БТ используются ПТ с затвором типа барьера Шотки

(ПТШ) на основе арсенида галлия. В последнем случае можно повысить

рабочую частоту УРЧ до 80 ГГц (сравнительно с 15 ГГц для БТ), что

объясняется большой подвижностью носителей в ПТШ. На частотах 0,3-30 ГГц

коэффициент усиления транзисторных однокаскадных усилителей составляет

около 5-6 дБ при полосе 3-4 % от несущей, коэффициент шума около 6 дБ

Характерно, что режимы согласования УРЧ по шумам и мощности для ПТШ

отличаются в меньшей степени, чем для БТ. Конструктивно транзисторы

выполняются на основе безвыводного кристалла, кристалла с выводами, в

Рис. 3.13 Схемы УРЧ СВЧ диапазона

условно герметичной (не по всем внешним воздействиям) и полностью

герметичной конструкциях.

В качестве согласующих цепей на входе и выходе каскада используют

трансформирующие фильтры, выполненные на отрезках длинных линий, в

том числе полосковых, волноводах или на сосредоточенных элементах (в

длинноволновой части диапазона). Если согласование осуществляется в

широком диапазоне частот, то следует учесть падение усиления каскада с

ростом частоты. Поэтому можно осуществить согласование на верхней

границе диапазона, а на более низких частотах перейти к рассогласованию

применить

частотно-зависимые

устройства

элементы

диссипативными потерями, которые увеличиваются с ростом частоты. В

результате удается выравнять частотную характеристику Кр и получить малый

КСВн в широком диапазоне частот. Наибольшее применение на СВЧ находит

схема включения с ОЭ (ОИ), позволяющая получить наибольшее усиление и

наилучшие шумовые характеристики.

На рис. 3.13,а приведена электрическая схема малошумящего усилителя

диапазона

сантиметровых

Конструктивно

выполняется

сапфировой подложке, на которую наносятся тонкопленочные резисторы,

индуктивности, конденсаторы и соединительные элементы. Согласующе-

трансформирующие цепи имеют вид отрезков полосковых линий (на рис. 4.50

заштрихованы). Параметры усилителя следующие: Кр. = 25 дБ, диапазон

усиливаемых частот 3,5-4,2 ГГц, Кш=5 дБ, КСВн < 2, потребляемый ток 30

мА при напряжении источника 12B.

На СВЧ нашли применение также балансные УРЧ, структурная схема

которых приведена на рис. 3.13,б Как видно, мощность входного сигнала через

направленный делитель поступает на два одинаковых усилительных каскада,

а затем суммируется в направленном сумматоре. Резисторы Rбал. являются

поглощающими, что улучшает согласование и обеспечивает малый КСВн на

Усилители радиотракта

ВОПРОСЫ ДЛЯ САМОКОНТРОЛЯ И ПОВТОРЕНИЯ

требования

предъявляются

усилителям

радиосигналов

зависимости oт области их применения?

2. Назовите и сравните различные виды параметров, используемых для

описания усилительных приборов в усилителе радиосигналов.

3. В чем заклю чается сущность иммитансного метода исследования

устойчивости усилителя радиосигналов?

4. В чем отличие коэффициента устойчивости усиления от коэффициента

предельного усиления усилителя радиосигналов?

5.Укажите методы борьбы с генерацией в усилителе радиосигналов. В чем

6. Как повысить коэффициент усиления усилителя радиосигналов?

7. Начертите схемы резонансных УРЧ, укажите назначения всех элементов.

8. Как изменяется в диапазоне частот резонансный коэффициент усиления

УРЧ? Как устранить влияние неравномерности его характеристики на работу

9. В чем достоинства каскодного УРЧ?

Начертите

полосовых

усилителей

радиочастоты,

назначения всех элементов.

11. Каковы зависимости основных характеристик полосового усилителя

высокой частоты от числа каскадов?

12. Почему в активных фильтрах возможно подавление помех приему без

использования индуктивных компонентов?

13. Каковы особенности работы RС-фильтров на высоких частотах?

14. Сравните между собой различные виды полосовых усилителей высокой

частоты с высокоэффективными избирательными цепями.

характеристики

приборов

"отрицательным" сопротивлением?

16. Сравните особенности УРЧ различных диапазонов волн.

усилителя.

качестве

делителя

сумматора

использоваться различные устройства, например шлейфные мосты (рис. 3.14)

балансного

усилителя

характерно

усиление,

различие

согласования

мощности

динамический диапазон, однако его использование требует принятия мер по

обеспечению идентичности плеч усилителя.