Какой компанией был создан первый компьютер. А вы знаете, кто изобрел компьютер? Британские «Бомбы» и «Колоссы»

Сегодня практически в каждом доме есть компьютер, а то и не один. Он стал неотъемлемой частью нашей жизни, особенно с появлением интернета. Компьютер — помощник в работе, кладезь информации, способ общения, развлечение… Дай нам разума, о Вселенная, чтоб он никогда не стал нашим повелителем!

Мы теперь и не представляем себе жизнь без компьютера. Нам сегодняшним сложно понять, почему старшее поколение никак не может освоить простые действия и относится к компьютеру с какой-то, чуть ли не предвзятой, осторожностью. Младшее поколение даже не представляет, что еще совсем недавно компьютеров вовсе не было!

А кто помнит первые ПК? Это была такая диковинка! Компьютер, как таковой, был громоздкий. Монитор, сделанный по принципу телевизора, занимал очень много места, не был цветным. Программы тоже оставляли желать лучшего (вспоминается класс программирования в школе). По сути это был калькулятор-переросток. О ноутбуках или планшетах не то, что речи не шло, это было что-то из разряда сказочного блюдечка с наливным яблочком.

Да, с сегодняшним компьютером не сравнить. Сегодняшний компьютер едва ли не выполняет функцию «голова», вместо нашей собственной, с прохудившейся памятью.

Но откуда же вообще взялся компьютер? Кто придумал компьютер?

Немного истории

Пожалуй, начну с того, что означает само слово «компьютер», и что оно же подразумевает.

Итак, слово «компьютер», как известно из школьного курса, в прямом переводе означает вычислитель. Кстати сказать, само слово даже не из английского языка, а производное от латыни. И впервые появилось оно в одном из английских словарей в конце девятнадцатого века. Изначально слово компьютер обозначало профессию, то есть, человека, занимающегося расчетами при помощи механических приспособлений. В первой половине двадцатого века в этот же словарь были внесены дополнения, исходя из которых, слово компьютер стало нарицательным, обозначающим сами вычислительные механизмы, а не человека ими пользующегося.

Одним из первых устройств (V-IV вв. до н.э.), с которых, можно считать, началась история развития компьютеров, была специальная доска, названная впоследствии «абак». Вычисления на ней проводились перемещением костей или камней в углублениях досок из бронзы, камня, слоновой кости и тому подобное. В Греции абак существовал уже в V в. до н.э., у японцев он назывался «серобаян», у китайцев — «суанпань». В Древней Руси для счета применялось устройство, похожее на абак, — «дощаный счет». В XVII веке этот прибор принял вид привычных российских счетов.

Абак (V-IV вв. до н.э.)

Французский математик и философ Блез Паскаль в 1642 г. создал первую машину, получившую в честь своего создателя название — Паскалина. Механическое устройство в виде ящика со многими шестернями кроме сложения выполняла и вычитание. Данные вводились в машину с помощью поворота наборных колесиков, которые отвечали числам от 0 до 9. Ответ появлялся в верхней части металлического корпуса.


Паскалина

В 1673 году Готфрид Вильгельм Лейбниц создал механическое счетное устройство (ступенчатый вычислитель Лейбница — калькулятор Лейбница), которое впервые не только складывало и вычитало, а еще умножало, делило и вычисляло квадратный корень. Впоследствии колесо Лейбница стало прототипом для массовых счетных приборов — арифмометров.


Модель ступенчатого вычислителя Лейбница

Английский математик Чарльз Бэббидж разработал устройство, которое не только выполняло арифметические действия, но и сразу же печатало результаты. В 1832 г. была построена десятикратно уменьшенная модель из двух тысяч латунных деталей, которая весила три тонны, но была способна выполнять арифметические операции с точностью до шестого знака после запятой и вычислять производные второго порядка. Эта вычислительная машина стала прообразом настоящих компьютеров, называлась она дифференциальной машиной.

Дифференциальная машина

Суммирующий аппарат с непрерывной передачей десятков создает российский математик и механик Пафнутий Львович Чебышев. В этом аппарате достигнута автоматизация выполнения всех арифметических действий. В 1881 году была создана приставка к суммирующему аппарату для умножения и деления. Принцип непрерывной передачи десятков широко использовался в различных счетчиках и вычислительных машинах.


Суммирующий аппарат Чебышева

Автоматизированная обработка данных появилась в конце прошлого века в США. Герман Холлерит создал устройство — Табулятор Холлерита — в котором , нанесенная на перфокарты, расшифровывалось электрическим током.

Табулятор Холлерита

В 1936 году молодой ученый из Кембриджа Алан Тьюринг придумал мысленный счетный аппарат-компьютер, который существовал только на бумаге. Его «умная машина» действовала по определенному заданному алгоритму. В зависимости от алгоритма, воображаемая машина могла применяться для самых разнообразных целей. Однако в то время это были чисто теоретические рассуждения и схемы, которые послужили прототипом программируемого компьютера, как вычислительного устройства, которое обрабатывает данные в соответствии с определенной последовательностью команд.

Информационные революции в истории

В истории развития цивилизации произошло несколько информационных революций — преобразований социальных общественных отношений вследствие изменений в области обработки, сохранения и передачи информации.

Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку цивилизации. Появилась возможность передачи знаний от поколений к поколениям.

Вторая (середина XVI в.) революция вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

Третья (конец XIX в.) революция с открытиями в области электричества, благодаря чему появились телеграф, телефон, радио, устройства, которые позволяют оперативно передавать и накапливать информацию в любом объеме.

Четвертая (с семидесятых годов XX в.) революция связана с изобретением микропроцессорной технологии и появлением персонального компьютера. На микропроцессорах и интегральных схемах создаются компьютеры, системы передачи данных (информационные коммуникации).

Этот период характеризуют три фундаментальные инновации:

  • переход от механических и электрических средств преобразования информации к электронным;
  • миниатюризация всех узлов, устройств, приборов, машин;
  • создание программно-управляемых устройств и процессов.

История развития компьютерной техники

Потребность в хранении, преобразовании и передачи информации у человека появилась значительно раньше, чем был создан телеграфный аппарат, первая телефонная станция и электронная вычислительная машина (ЭВМ). Фактически весь опыт, все знания, накопленные человечеством, так или иначе, способствовали появлению вычислительной техники. История создания ЭВМ — общее название электронных машин для выполнения вычислений — начинается далеко в прошлом и связана с развитием практически всех сторон жизни и деятельности человека. Сколько существует человеческая цивилизация, столько времени используется определенная автоматизация вычислений.

История развития компьютерной техники насчитывает около пяти десятилетий. За это время сменилось несколько поколений ЭВМ. Каждое следующее поколение отличалось новыми элементами (электронные лампы, транзисторы, интегральные схемы), технология изготовления которых была принципиально иной. В настоящее время существует общепринятая классификация поколений ЭВМ:

  • Первое поколение (1946 — начало 50-х гг.). Элементная база — электронные лампы. ЭВМ отличались большими габаритами, большим потреблением энергии, малым быстродействием, низкой надежностью, программированием в кодах.
  • Второе поколение (конец 50-х — начало 60-х гг.). Элементная база — полупроводниковые . Улучшились по сравнению с ЭВМ предыдущего поколения практически все технические характеристики. Для программирования используются алгоритмические языки.
  • 3-е поколение (конец 60-х — конец 70-х). Элементная база — интегральные схемы, многослойный печатный монтаж. Резкое снижение габаритов ЭВМ, повышение их надежности, увеличение производительности. Доступ с удаленных терминалов.
  • Четвёртое поколение (с середины 70-х — конец 80-х). Элементная база — микропроцессоры, большие интегральные схемы. Улучшились технические характеристики. Массовый выпуск персональных компьютеров. Направления развития: мощные многопроцессорные вычислительные системы с высокой производительностью, создание дешевых микроЭВМ.
  • Пятое поколение (с середины 80-х гг.). Началась разработка интеллектуальных компьютеров, которая пока не увенчалась успехом. Внедрение во все сферы компьютерных сетей и их объединение, использование распределенной обработки данных, повсеместное применение компьютерных информационных технологий.

Вместе со сменой поколений ЭВМ менялся и характер их использования. Если сначала они создавались и использовались в основном для решения вычислительных задач, то в дальнейшем сфера их применения расширилась. Сюда можно отнести обработку информации, автоматизацию управления производственно-технологическими и научными процессами и многое другое.

Принципы работы компьютеров Конрада Цузе

Идея о возможности построения автоматизированного счетного аппарата пришла в голову немецкому инженеру Конраду Цузе (Konrad Zuse) и в 1934 г. Цузе сформулировал основные принципы, на которых должны работать будущие компьютеры:

  • двоичная система счисления;
  • использование устройств, работающих по принципу «да / нет» (логические 1 / 0);
  • полностью автоматизированный процесс работы вычислителя;
  • программное управление процессом вычислений;
  • поддержка арифметики с плавающей запятой;
  • использование памяти большой емкости.

Цузе первым в мире определил, что обработка данных начинается с бита (бит он называл «статусом да / нет», а формулы двоичной алгебры — условными суждениями), первым ввел термин «машинное слово» (Word), первым объединил в вычислители арифметические и логические операции, отметив, что «элементарная операция компьютера — проверка двух двоичных чисел на равенство. Результатом будет тоже двоичное число с двумя значениями (равно, не равно)».

Первое поколение — ЭВМ с электронными лампами

Colossus I — первая вычислительная машина на лампах, созданная англичанами в 1943 г., для раскодирования немецких военных шифров; она состояла из 1800 электронных ламп — устройств для хранения информации — и была одним из первых программируемых электронных цифровых компьютеров.

ENIAC — был создан для расчета артиллерийских таблиц баллистики; этот компьютер весил 30 тонн, занимал 1000 квадратных футов и потреблял 130-140 кВт электроэнергии. Компьютер содержал 17468 вакуумных ламп шестнадцати типов, 7200 кристаллических диодов и 4100 магнитных элементов, и содержались они в шкафах общим объемом около 100 м 3 . ENIAC имел производительность 5000 операций в секунду. Общая стоимость машины составляла $ 750 000. Потребность в потребления электричества — 174 кВт, общее занимаемое пространство — 300 м 2 .


ENIAC — устройство для расчета артиллерийских таблиц баллистики

Еще один представитель 1-го поколения ЭВМ, на который следует обратить внимание, это EDVAC (Electronic Discrete Variable Computer). EDVAC интересен тем, что в нем была сделана попытка записывать программы электронным способом в так называемых «ультразвуковых линиях задержки» с помощью ртутных трубок. В 126 таких линиях было возможно сохранять 1024 строк четырехзначных двоичных чисел. Это была «быстрая» память. В качестве «медленной »памяти предполагалось фиксировать числа и команды на магнитном проводе, однако этот метод оказался ненадежным, и пришлось вернуться к телетайпным лентам. EDVAC работал быстрее своего предшественника, сложение занимало 1 мкс, деление — 3 мкс. Он содержал всего 3,5 тыс. электронных ламп и располагался на 13 м 2 площади.

UNIVAC (Universal Automatic Computer) представлял собой электронное устройство с программами, хранящимися в памяти, которые вводились туда уже не с перфокарт, а с помощью магнитной ленты; это обеспечивало высокую скорость чтения и записи информации, а, следовательно, и более высокое быстродействие машины в целом. Одна лента могла содержать миллион символов, записанных в двоичной форме. Ленты могли хранить и программы, и промежуточные данные.


Представители I-го поколения ЭВМ: 1) Electronic Discrete Variable Computer; 2) Universal Automatic Computer

Второе поколение — ЭВМ на транзисторах.

Транзисторы пришли на смену электронным лампам в начале 60-х годов. Транзисторы (которые действуют как электрические переключатели), потребляя меньше электроэнергии и выделяя меньше тепла, занимают и меньше места. Объединение нескольких транзисторных схем на одной плате дает интегральную схему (chip — «щепка», «стружка» буквально, пластинка). Транзисторы это счетчики двоичных чисел. Эти детали фиксируют два состояния — наличие тока и отсутствие тока, и тем самым обрабатывают информацию, представленную им именно в таком двоичном виде.

В 1953 г.. Уильям Шокли изобрел транзистор с p — n переходом (junction transistor). Транзистор заменяет электронную лампу и при этом работает с большей скоростью, выделяет очень мало тепла и почти не потребляет электроэнергию. Одновременно с процессом замены электронных ламп транзисторами совершенствовались методы хранения информации: как устройства памяти стали применяться магнитные сердечники и магнитные барабаны, а уже в 60-е годы получило распространение хранение информации на дисках.

Один из первых компьютеров на транзисторах — Atlas Guidance Computer — был запущен в 1957 г. и использовался при управлении запуском ракеты Atlas.

Созданный в 1957 г.. RAMAC был недорогим компьютером с модульной внешней памятью на дисках, комбинированным оперативным запоминающим устройством на магнитных сердечниках и барабанах. И хотя этот компьютер еще не был полностью транзисторным, он отличался высокой работоспособностью и простотой обслуживания и пользовался большим спросом на рынке средств автоматизации делопроизводства в офисах. Поэтому для корпоративных заказчиков срочно выпустили уже «большой» RAMAC (IBM-305), для размещения 5 Мбайт данных системе RAMAC нужно было 50 дисков диаметром 24 дюйма. Созданная на основе этой модели информационная система безотказно обрабатывала массивы запросов на 10 языках.

В 1959 году IBM создала свой первый полностью транзисторный большой универсальный компьютер модели 7090, способный выполнять 229 тыс. операций в секунду — настоящий транзисторный мэйнфрейм. В 1964 году на основе двух 7090-х мейнфреймов американская авиакомпания SABRE впервые применила автоматизированную систему продажи и бронирования авиабилетов в 65 городах мира.

В 1960 году DEC представила первый в мире миникомпьютер — модель PDP-1 (Programmed Data Processor, программируемый процессор данных), компьютер с монитором и клавиатурой, который стал одним из самых заметных явлений на рынке. Этот компьютер был способен выполнять 100 000 операций в секунду. Сама машина занимала на полу всего 1,5 м 2 . PDP-1 стал, по сути, первой в мире игровой платформой благодаря студенту MIT Стиву Расселу, который написал для него компьютерную игрушку Star War!


Представители II-го поколения ЭВМ: 1) RAMAC ; 2) PDP -1

В 1968 году Digital впервые наладила серийное производство мини-компьютеров — это был PDP-8: цена их была около $ 10000, а размером модель была холодильник. Именно эту модель PDP-8 смогли покупать лаборатории, университеты и небольшие предприятия.

Отечественные компьютеры того времени можно охарактеризовать так: по архитектурным, схемным и функциональных решений они соответствовали своему времени, но их возможности были ограничены из-за несовершенства производственной и элементной базы. Наибольшей популярностью пользовались машины серии БЭСМ. Серийное производство, достаточно незначительное, началось выпуском ЭВМ «Урал-2» (1958), БЭСМ-2, « Минск-1» и « Урал-3» (все — 1959 г.). В 1960 г. пошли в серию « М-20» и «Урал-4». Максимальной производительностью в конце 1960 располагал «М-20» (4500 ламп, 35 тыс. полупроводниковых диодов, память на 4096 ячеек) — 20 тыс. операций в секунду. Первые компьютеры на полупроводниковых элементах («Раздан-2», «Минск — 2», «М-220» и «Днепр») находились еще в стадии разработки.

Третье поколение — малогабаритные ЭВМ на интегральных схемах

В 50-х и 60-х годах сборка электронного оборудования представляла трудоемкий процесс, который замедлялся возрастающей сложностью электронных схем. Так, например, компьютер типа CD1604 (1960 , Control Data Corp.) , содержал около 100 тыс. диодов и 25 тыс. транзисторов.

В 1959 американцы Джек Сент Клэр Килби (фирма Texas Instruments) и Роберт Н. Нойс (фирма Fairchild Semiconductor) независимо друг от друга изобрели интегральную схему (ИС) — совокупность тысяч транзисторов, размещенных на одном кристалле кремния внутри микросхемы.

Производство компьютеров на ИС (микросхемами их стали называть позже) было гораздо дешевле, чем на транзисторах. Благодаря этому многие организации смогли приобрести и освоить такие машины. А это, в свою очередь, привело к росту спроса на универсальные ЭВМ, предназначенные для решения различных задач. В эти годы производство компьютеров приобрело промышленные масштабы.

В это же время появляется полупроводниковая память, которая и по сей день используется в персональных компьютерах.


Представитель III-го поколения ЭВМ — ЕС-1022

Четвертое поколение — персональные компьютеры на процессорах

Предшественниками IBM PC были Apple II, Radio Shack TRS-80, Atari 400 и 800, Commodore 64 и Commodore PET.

Рождения персональных компьютеров (ПК, PC) с полным основанием связывают с процессорами Intel. Корпорация была основана в середине июня 1968 г. с тех пор Intel превратилась в крупнейшего в мире производителя микропроцессоров с числом сотрудников более 64 тысяч. Целью Intel было создание полупроводниковой памяти и, чтобы выжить, фирма стала брать и сторонние заказы на разработку полупроводниковых устройств.

В 1971 г.. Intel получила заказ на разработку набора из 12 микросхем для программируемых микрокалькуляторов, но инженерам Intel создание 12 специализированных чипов показалось громоздким и неэффективным. Задача сокращения номенклатуры микросхем была решена путем создания «спарки» с полупроводниковой памяти и исполнительного устройства, способного работать по командам, хранящимся в ней. Это был прорыв в философии создания вычислительных средств: универсальное логическое устройство в виде 4-разрядного центрального процессорного устройства i4004, который позже был назван первый микропроцессором. Он представлял собой набор из 4 чипов, в числе которых был один чип, управляемый командами, которые хранились в полупроводниковой внутренней памяти.

Как коммерческая разработка, микрокомпьютер (так тогда называлась микросхема) появился на рынке 11 ноября 1971 под названием 4004: 4 битный, содержащий 2300 транзисторов, тактовая частота 60 кГц, стоимость — $ 200. В 1972 г. компания Intel выпустила восьмибитный микропроцессор 8008, а в 1974 г. — его усовершенствованную версию Intel-8080, которая к концу 70-х годов стала стандартом для микрокомпьютерной индустрии. Уже в 1973 году во Франции появляется первый компьютер на базе процессора 8080 — Micral. По разным причинам этот процессор не имел успеха в Америке (в Советском Союзе он был скопирован и выпускался долгое время под названием 580ВМ80). Тогда же группа инженеров ушла из Intel и образовала фирму Zilog. Наиболее громким ее продуктом является Z80, который имеет расширенный набор команд 8080 и, что обеспечило его коммерческий успех для бытовых приборов, обходился одним напряжением питания 5В. На его основе был создан, в частности, компьютер ZX-Spectrum (иногда его называют по имени создателя — Sinclair), ставший практически прообразом Home PC середины 80-х. В 1981 г. Intel выпускает 16-разрядный процессор 8086 и 8088 — аналог 8086, за исключением внешней 8-битной шины данных (вся периферия тогда была еще 8-битной).

Конкурент Intel, компьютер Apple II отличался тем, что не был вполне законченным аппаратом и оставалась некоторая свобода для доработки непосредственно пользователем — можно было устанавливать дополнительные интерфейсные платы, платы памяти и др. Именно эта особенность, которую впоследствии стали называть «открытой архитектурой», стала его основным преимуществом. Успеху Apple II способствовали еще две новинки, разработаные в 1978 году. Недорогой накопитель на гибких дисках, и первая программа для коммерческих расчетов — электронная таблица VisiCalc.

Большой популярностью в 70-х годах пользовался компьютер Altair-8800, построенный на основе процессора Intel -8080. Хотя возможности Altair были довольно ограничены — оперативная память составляла всего 4 Kb, клавиатура и экран отсутствовали, его появление было встречено с большим энтузиазмом. Он был выпущен на рынок в 1975 году, и в первые месяцы было продано несколько тысяч комплектов машины.


Представители IV -го поколения ЭВМ: а) Micral; б) Apple II

Этот компьютер, разработанный фирмой MITS, продавался по почте в виде набора деталей для самостоятельной сборки. Весь комплект для сборки стоил $ 397, тогда как только один процессор от Intel продавался за $360.

Распространение ПК к концу 70-х годов привело к некоторому снижению спроса на большие ЭВМ и мини-ЭВМ — фирма IBM в 1979 выпустила IBM PC на базе процессора 8088. Существующее в начале 80-х годов программное обеспечение было ориентировано на обработку текстов и простых электронных таблиц, а сама мысль о том, что «микрокомпьютер» может стать привычным и необходимым устройством на работе и дома, казалась невероятной.

12 августа 1981 года IBM представила Personal Computer (PC), ставший, в сочетании с программным обеспечением от Microsoft, стандартом для всего парка ПК современного мира. Цена модели IBM PC с монохромным дисплеем составила около $3.000, с цветным — $6.000. Конфигурация IBM PC: процессор Intel 8088 с частотой 4,77 МГц и 29 тысячами транзисторов, 64 Кб оперативной памяти, 1 флоппи-дисковод емкостью 160 Кб, — обычный встроенный динамик. В это время запуск приложений и работа с ними были настоящей мукой: из-за отсутствия жесткого диска приходилось все время менять дискеты, не было ни «мыши», ни графического оконного пользовательского интерфейса, ни точного соответствия между изображением на экране и конечным результатом (WYSIWYG). Цветная графика была крайне примитивна, о трехмерной анимации или фотообработке не было и речи, однако история развития персональных компьютеров началась именно с этой модели.

В 1984 году IBM представила еще две новинки. Во-первых, была выпущена модель для домашних пользователей, названная PCjr на базе процессора 8088, котрая была оснащена едва ли не первой беспроводной клавиатурой, но успеха на рынке эта модель не добилась.

Вторая новинка — IBM PC AT. Важнейшая особенность: переход на микропроцессоры более высоких уровней (80286 с цифровым сопроцессором 80287) с сохранением совместимости с предыдущими моделями. Этот компьютер оказался законодателем стандартов на много лет вперед в целом ряде отношений: здесь впервые появилась 16-разрядная шина расширений (остающаяся стандартной и по сей день) и графические адаптеры EGA с разрешением 640х350 при глубине представления цвета 16 бит.

В 1984 г. состоялся выпуск первых компьютеров Macintosh с графическим интерфейсом, манипулятором «мышь» и многими другими атрибутами пользовательского интерфейса, без которых не мыслятся современные настольные компьютеры. Пользователей новый интерфейс не оставил равнодушными, но революционный компьютер не был совместим ни с прежними программами, ни с аппаратными компонентами. А в тогдашних корпорациях уже стали нормальными рабочими инструментами WordPerfect и Lotus 1-2-3. Пользователи уже привыкли и приспособились к символьному интерфейса DOS. С их точки зрения, Macintosh выглядел даже как-то несерьезно.

Пятое поколение компьютеров (с 1985 и по наше время)

Отличительные признаки V -го поколения:

  1. Новые технологии производства.
  2. Отказ от традиционных языков программирования таких, как Кобол и Фортран в пользу языков с повышенными возможностями манипулирования символами и с элементами логического программирования (Пролог и Лисп).
  3. Акцент на новые архитектуры (например, на архитектуру потока данных).
  4. Новые способы ввода-вывода, удобные для пользователя (например, распознавание речи и образов, синтеза речи, обработка сообщений на естественном языке)
  5. Искусственный интеллект (то есть автоматизация процессов решения задач, получения выводов, манипулирования знаниями)

Именно на рубеже 80-90-х сформировался альянс Windows-Intel. Когда в начале 1989 г. Intel выпустила микропроцессор 486, производители компьютеров не стали дожидаться примера со стороны IBM или Compaq. Началась гонка, в которую вступили десятки фирм. Но все новые компьютеры были чрезвычайно похожи друг на друга — их объединяла совместимость с Windows и процессоры от Intel.

В 1989 г. был выпущен процессор i486. Он имел встроенный математический сопроцессор, конвейер и встроенный кэш первого уровня.

Направления развития компьютеров

Нейрокомпьютеры можно отнести к шестому поколению ЭВМ. Несмотря на то, что реальное применение нейросетей началось относительно недавно, нейрокомпьютингу как научному направлению пошел седьмой десяток лет, а первый нейрокомпьютер был построен в 1958 году. Разработчиком машины был Фрэнк Розенблатт, который подарил своему детищу имя Mark I.

Теория нейронных сетей впервые была обозначена в работе МакКаллока и Питтса в 1943 г.: любую арифметическую или логическую функцию можно реализовать с помощью простой нейронной сети. Интерес к нейрокомпьютингу снова вспыхнул в начале 80-х годов и был подогрет новыми работами с многослойным перцептроном и параллельными вычислениями.

Нейрокомпьютеры — это ПК, состоящих из множества работающих параллельно простых вычислительных элементов, которые называют нейронами. Нейроны образуют так называемые нейросети. Высокое быстродействие нейрокомпьютеров достигается именно за счет огромного количества нейронов. Нейрокомпьютеры построены по биологическим принципу: нервная система человека состоит из отдельных клеток — нейронов, количество которых в мозгу достигает 10 12 , при том, что время срабатывания нейрона — 3 мс. Каждый нейрон выполняет достаточно простые функции, но так как он связан в среднем с 1 — 10 тыс. других нейронов, такой коллектив успешно обеспечивает работу человеческого мозга.

Представитель VI-го поколения ЭВМ — Mark I

В оптоэлектронных компьютерах носителем информации является световой поток. Электрические сигналы преобразуются в оптические и обратно. Оптическое излучение в качестве носителя информации имеет ряд потенциальных преимуществ по сравнению с электрическими сигналами:

  • Световые потоки, в отличие от электрических, могут пересекаться друг с другом;
  • Световые потоки могут быть локализованы в поперечном направлении нанометровых размеров и передаваться по свободному пространству;
  • Взаимодействие световых потоков с нелинейными средами распределено по всей среде, что дает новые степени свободы в организации связи и создания параллельных архитектур.

В настоящее время ведутся разработки по созданию компьютеров полностью состящих из оптических устройств обработки информации. Сегодня это направление является наиболее интересным.

Оптический компьютер имеет невиданную производительность и совсем другую, чем электронный компьютер, архитектуру: за 1 такт продолжительностью менее 1 наносекунды (это соответствует тактовой частоте более 1000 МГц) в оптическом компьютере возможна обработка массива данных около 1 мегабайта и больше. К настоящему времени уже созданы и оптимизированы отдельные составляющие оптических компьютеров.

Оптический компьютер размером с ноутбук может дать пользователю возможность разместить в нем едва ли не всю информацию о мире, при этом компьютер сможет решать задачи любой сложности.

Биологические компьютеры — это обычные ПК, только основанные на ДНК-вычислений. Реально показательных работ в этой области так мало, что говорить о существенных результатах не приходится.

Молекулярные компьютеры — это ПК, принцип действия которых основан на использовании изменении свойств молекул в процессе фотосинтеза. В процессе фотосинтеза молекула принимает различные состояния, так что ученым остается только присвоить определенные логические значения каждом состояния, то есть «0» или «1». Используя определенные молекулы, ученые определили, что их фотоцикл состоит всего из двух состояний, «переключать» которые можно изменяя кислотно-щелочной баланс среды. Последнее очень легко сделать с помощью электрического сигнала. Современные технологии уже позволяют создавать целые цепочки молекул, организованные подобным образом. Таким образом, очень даже возможно, что и молекулярные компьютеры ждут нас «не за горами».

История развития компьютеров еще не закончена, помимо совершенствования старых, идет и разработка совершенно новых технологий. Пример тому квантовые компьютеры — устройства, работающие на основе квантовой механики. Полномасштабный квантовый компьютер — гипотетическое устройство, возможность построения которого связана с серьезным развитием квантовой теории в области многих частиц и сложных экспериментов; эта работа лежит на передовом крае современной физики. Экспериментальные квантовые компьютеры уже существуют; элементы квантовых компьютеров могут применяться для повышения эффективности вычислений на уже существующей приборной базе.

В конце XIX века Герман Холлерит в Америке изобрел счетно-перфорационные машины. В них использовались перфокартыдля хранения числовой информации.

Каждая такая машина могла выполнять только одну определенную программу, манипулируя с перфокартами и числами, пробитыми на них.

Счетно-перфорационные машины осуществляли перфорацию, сортировку, суммирование, вывод на печать числовых таблиц. На этих машинах удавалось решать многие типовые задачи статистической обработки, бухгалтерского учета и другие.

Г. Холлерит основал фирму по выпуску счетно-перфорационных машин, которая затем была преобразована в фирму IBM - ныне самого известного в мире производителя компьютеров.

Непосредственными предшественниками ЭВМ были релейные вычислительные машины.

К 30-м годам XX века получила большое развитие релейная автоматика, которая позволяла кодировать информацию в двоичном виде.

В процессе работы релейной машины происходят переключения тысяч реле из одного состояния в другое.

В первой половине XX века бурно развивалась радиотехника. Основным элементом радиоприемников и радиопередатчиков в то время были электронно-вакуумные лампы.

Электронные лампы стали технической основой для первых электронно-вычислительных машин (ЭВМ).

Первая ЭВМ - универсальная машина на электронных лампах построена в США в 1945 году.

Эта машина называлась ENIAC (расшифровывается так: электронный цифровой интегратор и вычислитель). Конструкторами ENIAC были Дж.Моучли и Дж.Эккерт.

Скорость счета этой машины превосходила скорость релейных машин того времени в тысячу раз.

Первый электронный компьютер ENIAC программировался с помощью штеккерно-коммутационного способа, то есть программа строилась путем соединения проводниками отдельных блоков машины на коммутационной доске.

Эта сложная и утомительная процедура подготовки машины к работе делала ее неудобной в эксплуатации.

Основные идеи, по которым долгие годы развивалась вычислительная техника, были разработаны крупнейшим американским математиком Джоном фон Нейманом

В 1946 году в журнале «Nature» вышла статья Дж. фон Неймана, Г. Голдстайна и А. Беркса «Предварительное рассмотрение логической конструкции электронного вычислительного устройства».

В этой статье были изложены принципы устройства и работы ЭВМ. Главный из них - принцип хранимой в памяти программы, согласно которому данные и программа помещаются в общую память машины.

Принципиальное описание устройства и работы компьютера принято называть архитектурой ЭВМ . Идеи, изложенные в упомянутой выше статье, получили название «архитектура ЭВМ Дж. фон Неймана».

В 1949 году была построена первая ЭВМ с архитектурой Неймана - английская машина EDSAC.

Годом позже появилась американская ЭВМ EDVAC. Названные машины существовали в единственных экземплярах. Серийное производство ЭВМ началось в развитых странах мира в 50-х годах.

В нашей стране первая ЭВМ была создана в 1951 году. Называлась она МЭСМ - малая электронная счетнаямашина. Конструктором МЭСМ былСергей Алексеевич Лебедев

Под руководством С.А. Лебедева в 50-х годах были построены серийные ламповые ЭВМ БЭСМ-1 (большая электронная счетная машина), БЭСМ-2, М-20.

В то время эти машины были одними из лучших в мире.

В 60-х годах С.А.Лебедев руководил разработкой полупроводниковых ЭВМ БЭСМ-ЗМ, БЭСМ-4, М-220, М-222.

Выдающимся достижением того периода была машина БЭСМ-6. Это первая отечественная и одна из первых в мире ЭВМ с быстродействием 1 миллион операций в секунду. Последующие идеи и разработки С.А. Лебедева способствовали созданию более совершенных машин следующих поколений.

Электронно-вычислительную технику принято делить на поколения

Смены поколений чаще всего были связаны со сменой элементной базы ЭВМ, с прогрессом электронной техники.

Это всегда приводило к росту вычислительной мощности ЭВМ, то есть быстродействия и объема памяти.

Но это не единственное следствие смены поколений. При таких переходах, происходили существенные изменения в архитектуре ЭВМ, расширялся круг задач, решаемых на ЭВМ, менялся способ взаимодействия между пользователем и компьютером.

Первое поколение ЭВМ - ламповые машины 50-х годов. Скорость счета самых быстрых машин первого поколения доходила до 20 тысяч операций в секунду (ЭВМ М-20).

Для ввода программ и данных использовались перфоленты и перфокарты.

Поскольку внутренняя память этих машин была невелика (могла вместить в себя несколько тысяч чисел и команд программы), то они, главным образом, использовались для инженерных и научных расчетов, не связанных с переработкой больших объемов данных.

Это были довольно громоздкие сооружения, содержавшие в себе тысячи ламп, занимавшие иногда сотни квадратных метров, потреблявшие электроэнергию в сотни киловатт

Программы для таких машин составлялись на языках машинных команд. Это довольно трудоемкая работа.

Поэтому программирование в те времена было доступно немногим.

В 1949 году в США был создан первый полупроводниковый прибор, заменяющий электронную лампу. Он получил название транзистор. Транзисторы быстро внедрялись в радиотехнику.

Второе поколение ЭВМ

В 60-х годах транзисторы стали элементной базой для ЭВМ второго поколения .

Переход на полупроводниковые элементы улучшил качество ЭВМ по всем параметрам: они стали компактнее, надежнее, менее энергоемкими

Быстродействие большинства машин достигло десятков и сотен тысяч операций в секунду.

Объем внутренней памяти возрос в сотни раз по сравнению с ЭВМ первого поколения.

Большое развитие получили устройства внешней (магнитной) памяти: магнитные барабаны, накопители на магнитных лентах.

Благодаря этому появилась возможность создавать на ЭВМ информационно-справочные, поисковые системы.

Такие системы связаны с необходимостью длительно хранить на магнитных носителях большие объемы информации.

Во времена второго поколения активно стали развиваться языки программирования высокого уровня. Первыми из них были ФОРТРАН, АЛГОЛ, КОБОЛ.

Составление программы перестало зависеть от модели машины, сделалось проще, понятнее, доступнее.

Программирование как элемент грамотности стало широко распространяться, главным образом среди людей с высшим образованием.

Третье поколение ЭВМ создавалось на новой элементной базе - интегральных схемах. С помощью очень сложной технологии специалисты научились монтировать на маленькой пластине из полупроводникового материала, площадью менее 1 см, достаточно сложные электронные схемы.

Их назвали интегральными схемами (ИС)

Первые ИС содержали в себе десятки, затем - сотни элементов (транзисторов, сопротивлений и др.).

Когда степень интеграции (количество элементов) приблизилась к тысяче, их стали называть большими интегральными схемами - БИС; затем появились сверхбольшие интегральные схемы - СБИС.

ЭВМ третьего поколения начали производиться во второй половине 60-х годов, когда американская фирма IBM приступила к выпуску системы машин IBM-360. Это были машины на ИС.

Немного позднее стали выпускаться машины серии IBM-370, построенные на БИС.

В Советском Союзе в 70-х годах начался выпуск машин серии ЕС ЭВМ (Единая Система ЭВМ) по образцу IBM-360/370.

Переход к третьему поколению связан с существенными изменениями архитектуры ЭВМ.

Появилась возможность выполнять одновременно несколько программ на одной машине. Такой режим работы называется мультипрограммным (многопрограммным) режимом.

Скорость работы наиболее мощных моделей ЭВМ достигла нескольких миллионов операций в секунду.

На машинах третьего поколения появился новый тип внешних запоминающих устройств - магнитные диски .

Как и на магнитных лентах, на дисках можно хранить неограниченное количество информации.

Но накопители на магнитных дисках (НМД) работают гораздо быстрее, чем НМЛ.

Широко используются новые типы устройств ввода-вывода: дисплеи , графопостроители .

В этот период существенно расширились области применения ЭВМ. Стали создаваться базы данных, первые системы искусственного интеллекта, системы автоматизированного проектирования (САПР) и управления (АСУ).

В 70-е годы получила мощное развитие линия малых (мини) ЭВМ. Своеобразным эталоном здесь стали машины американской фирмы DEC серии PDP-11.

В нашей стране по этому образцу создавалась серия машин СМ ЭВМ (Система Малых ЭВМ). Они меньше, дешевле, надежнее больших машин.

Машины этого типа хорошо приспособлены для целей управления различными техническими объектами: производственными установками, лабораторным оборудованием, транспортными средствами. По этой причине их называют управляющими машинами.

Во второй половине 70-х годов производство мини-ЭВМ превысило производство больших машин.

Четвертое поколение ЭВМ

Очередное революционное событие в электронике произошло в 1971 году, когда американская фирма Intel объявила о создании микропроцессора .

Микропроцессор - это сверхбольшая интегральная схема, способная выполнять функции основного блока компьютера - процессора

Микропроцессор - это миниатюрный мозг, работающий по программе, заложенной в его память.

Первоначально микропроцессоры стали встраивать в различные технические устройства: станки, автомобили, самолеты . Такие микропроцессоры осуществляют автоматическое управление работой этой техники.

Соединив микропроцессор с устройствами ввода-вывода, внешней памяти, получили новый тип компьютера: микроЭВМ

МикроЭВМ относятся к машинам четвертого поколения.

Существенным отличием микроЭВМ от своих предшественников являются их малые габариты (размеры бытового телевизора) и сравнительная дешевизна.

Это первый тип компьютеров, который появился в розничной продаже.

Самой популярной разновидностью ЭВМ сегодня являются персональные компьютеры

Появление феномена персональных компьютеров связано с именами двух американских специалистов: Стива Джобса и Стива Возняка.

В 1976 году на свет появился их первый серийный ПК Apple-1, а в 1977 году - Apple-2.

Сущность того, что такое персональный компьютер, кратко можно сформулировать так:

ПК - это микроЭВМ с «дружественным» к пользователю аппаратным и программным обеспечением.

В аппаратном комплекте ПК используется

    цветной графический дисплей,

    манипуляторы типа «мышь»,

    «джойстик»,

    удобная клавиатура,

    удобные для пользователя компактные диски (магнитные и оптические).

Программное обеспечение позволяет человеку легко общаться с машиной, быстро усваивать основные приемы работы с ней, получать пользу от компьютера, не прибегая к программированию.

Общение человека и ПК может принимать форму игры с красочными картинками на экране, звуковым сопровождением.

Неудивительно, что машины с такими свойствами быстро приобрели популярность, причем не только среди специалистов.

ПК становится такой же привычной бытовой техникой, как радиоприемник или телевизор. Их выпускают огромными тиражами, продают в магазинах.

С 1980 года «законодателем мод» на рынке ПК становится американская фирма IBM.

Ее конструкторам удалось создать такую архитектуру, которая стала фактически международным стандартом на профессиональные ПК. Машины этой серии получили название IBM PC (Personal Computer).

В конце 80-х - начале 90-х годов большую популярность приобрели машины фирмы Apple Corporation марки Macintosh. В США они широко используются в системе образования.

Появление и распространение ПК по своему значению для общественного развития сопоставимо с появлением книгопечатания.

Именно ПК сделали компьютерную грамотность массовым явлением.

С развитием этого типа машин появилось понятие «информационные технологии», без которых уже становится невозможным обойтись в большинстве областей деятельности человека.

Есть и другая линия в развитии ЭВМ четвертого поколения. Это - суперЭВМ. Машины этого класса имеют быстродействие сотни миллионов и миллиарды операций в секунду.

Первой суперЭВМ четвертого поколения была американская машина ILLIAC-4, за ней появились CRAY, CYBER и др.

Из отечественных машин к этой серии относится многопроцессорный вычислительный комплекс ЭЛЬБРУС.

ЭВМ пятого поколения - это машины недалекого будущего. Основным их качеством должен быть высокий интеллектуальный уровень.

Машины пятого поколения - это реализованный искусственный интеллект.

Многое уже практически сделано в этом направлении.

От «Apple») создаёт персональный компьютер и получает на него патент!

Знаете ли вы, что первый в мире персональный компьютер был создан, отнюдь, не Стивом Джобсом и Стивом Возняком в гараже Пало-Альто, а простым советским конструктором Арсением Анатольевичем Гороховым в Омском НИИ авиационных технологий?

Мотаем время назад.

1950-е годы . Компьютеры огромные, громоздкие, дорогие. Советский «Вихрь» 1951 года, первая машина с выводом данных на экран, обладает оперативной памятью всего в 512 байт , занимает при этом двухэтажный дом. Американский «ровесник» – «Univac» – имеет накопитель на магнитной металлической ленте, быстродействующий принтер, но весит 13 тонн и стоит около 1,5 миллионов долларов. «Bendix G-15» , выпущенный в в 1956 году, получает название мини-компьютера – на деле весит 450 кг и стоит не менее 50 000 $. На звание персональной не тянет ни одна машина.

1960-е годы . Компьютеры становятся быстрее, мощнее, компактнее. В США выпускают первый коммерческий компьютер, оснащённый клавиатурой и монитором – «PDP-1» . Габариты нового аппарата – с три холодильника, цена – в десятки раз ниже стоимости обычного большого компьютера. Широкий шаг вперёд, но недостаточный для повсеместного внедрения техники. Всего было продано лишь 50 экземпляров .

Первым «домашним» компьютером претендует стать «Honeywell Kitchen Computer» , представленный в США в 1969 году. Весил он около 65 кг, стоил 10600$ , представлял из себя постамент со встроенной разделочной доской, панелью лампочек и кнопочек. Выполнял всего одну функцию – хранение различных рецептов. Для работы с «кухонным компьютером» требовались двухнедельные курсы, потому как рецепты выводились на экран в двоичном коде. Желающие приобрести столь дорогую «поваренную книгу» не нашлись.

1970-е годы . С созданием первого микропроцессора начинается эпоха персональных компьютеров. Изобретатели по соревнуются в сборке собственных моделей. Американский предприниматель Эдвард Робертс первым понимает, сколь велик потенциал 8-битного микропроцессора Intel 8080 , выпущенного в 1974 году, и создаёт на его базе микрокомпьютер «Altair 8800» . Благодаря заключённой сделке с компанией «Intel» на оптовую покупку микропроцессоров (75$ за штуку, при розничной стоимости – 360$), Робертс устанавливает на своё изобретение рекордную цену – всего 397 «баков»! Реклама на обложке уважаемого журнала «Popular Electronics» за 1975 год делает своё дело. В первый же месяц разработчики продают несколько тысяч экземпляров «Altair 8800» . Однако полученный заказ становится сюрпризом для покупателей: комплект представляет из себя набор деталей и ящик для корпуса. Пользователям приходится самим паять, тестировать, создавать программы на машинном языке. (Что, конечно, тоже неплохо, ведь именно на «Altair 8800» основатели «Microsoft» Бил Гейтс и Пол Аллен испытывают свою знаменитую программу – «Basic» ).

Как бы то ни было, компьютер Робертса – находка для изобретателей, а «простые смертные» по-прежнему остаются без техники. На помощь им в 1976 году приходят Стив Возняк и Стив Джобс, решающие продать свой «Apple I» , собранный для личного пользования в гараже Пало-Альто (Калифорния). Стоимость нового компьютера составляет 666,66$ . А главным достоинством является то, что, в отличие от «Altair 8800» и многих других машин того времени, «Apple I» предлагается уже собранным . Для работы требуются только корпус, клавиатура и монитор. Но и они будут включены в комплект 2 года спустя, в серийном выпуске цветного, звукового «Apple II» . Такова история персонального компьютера.

Стоп, стоп, стоп… А как же советский учёный, и НИИ авиационных технологий?!

Ах, да! Совсем забыла. Есть в истории персональных компьютеров и тёмная страница .

Дело было так. В далёком 1968 году, за 8 лет до первого «яблока», советский инженер-электромеханик Арсений Анатольевич Горохов изобрёл машину под названием «Устройство для задания программы воспроизведения контура детали». Так, во всяком случае, указано в патенте, авторском свидетельстве № 383005 , от 18 мая 1968 года. Название не случайно, потому как предназначался разработанный аппарат, прежде всего, для создания сложных инженерных чертежей. Сам изобретатель предпочитает называть аппарат «программируемый прибор интеллектор».

Согласно чертежам, «интеллектор» имел монитор, отдельный системный блок с жёстким диском, устройством для решения автономных задач и персонального общения с ЭВМ, материнской платой, памятью, видеокартой и прочим, за исключением компьютерной мыши.

Омский инженер-электромеханик Арсений Горохов 45 лет назад изобрёл устройство, которое теперь называется Персональной ЭВМ

Как сообщает интернет-сайт «Время омское», посмотреть первый в мире персональный компьютер, сегодня, увы, невозможно, учреждение, где он был создан – «почтовый ящик» Омский НИИ авиационных технологий, несколько лет как закрыт. У автора изобретения остались патент , с описанием «Программируемого прибора интеллектора» и запись в российской книге рекордов ДИВО: 45 лет тому назад в 1968-м году омский инженер-электромеханик Арсений Горохов изобрёл устройство, которое теперь называется Персональной ЭВМ.

Сейчас личную «персоналку» Горохов использует в основном как пишущую машинку. По его словам, новой она была 5 лет назад, а сделать «ап-грейд», то есть модернизировать, дорого, пенсии не хватит.

Составные части современного компьютера – монитор, системный блок, клавиатура – были и в «интеллекторе» Горохова, правда, под другими названиями. Предназначался аппарат, прежде всего, для создания сложных инженерных чертежей. Был разработан Гороховым и свой «софт» – способ диалога с машиной без толстых пачек перфокарт и бригады программистов. Но дальше всесоюзного патента дело не пошло – «зелёный свет» изобретению не включили, и в 1975 году узнали, что термин «персональный компьютер» подарила миру американская компания «Эппл».

40 авторских свидетельств и патентов Арсения Горохова за три десятка лет – лишь моральное удовлетворение от работы. Следы материального остались в патентных ведомостях – 20 рублей за каждое , не вошедшее в серию. Если новинке всё-таки давали пробиться в «серию», автор получал в 1000 раз больше. Вот только распознать таинственный «закон везения» изобретателю удавалось далеко не всегда. И вероятные прибыли сейчас Горохов считает от противного, не «сколько получили, а сколько не смогли».

«Не нефть – будущее России, а изобретатели» – лейтмотив очередной статьи Горохова «Система ускоренного освоения изобретений», опубликованной в последнем, 12-м, номере 2003 года журнала «Интеллектуальная собственность». Жаль, что в России нет практики, как в США, где Президент дважды в год встречается с руководителем Патентного ведомства. Всё чаще вместо чувства гордости приходится применять иронию, говорит автор. Перспективы уплывают.

Сейчас на рабочем столе у изобретателя – новый вид таблицы Менделеева, и заготовка для пространственного телевидения . Вот только интересующихся идеей, кроме редких гостей-журналистов, как не было, так и нет.

Об изобретении сотового телефона статья «Тайна соты» …

Пожалуй, сегодня нельзя представить жизнь без использования компьютеров. Они очень плотно вошли почти во все области человеческой деятельности.

Компьютеры помогают сохранять и обрабатывать огромные объемы данных с большой скоростью, что позволяет значительно оптимизировать рабочий процесс. С каждым годом емкость дискового пространства для хранения данных увеличивается, а размер компьютеров уменьшается: от настольных компьютеров, до тонких моноблоков и мобильных ноутбуков.

Однако, компьютеры не всегда обладали такими качествами. Давайте вместе с вами рассмотрим, как появился самый первый компьютер, кто был его создателем и как мы вообще, докатились до такого:)


Когда появился первый компьютер 1

Принято считать, что первым этапом появления вычислительной техники и прародителем современного компьютера были первые арифметические счеты изобретенные в Древнем Вавилоне. Назывались эти счеты - абак. Механизм абака был достаточно прост и представлял собой доску с линиями. Расчеты производились с помощью расставления камней или иных предметов на этих линиях.

Суаньпань - китайский абак 2

Со временем в Китае появился усовершенствованный вариант абака, который называли суаньпань. Через эти счеты протягивали веревки, на которых нанизывали косточки в виде шариков. Счетная доска позволяла производить четыре основные операции: сложение, вычитание, умножение и деление. Кроме этого возможно было извлекать кубические и квадратные корни.

Антикитерский механизм для астрономов 3

Спустя какое-то время в Греции сделали устройство позволяющее делать астрономические вычисления. Его назвали - антикитерским механизмом, в честь острова, неподалеку от которого механизм был найден. Устройство состояло из зубчатых шестеренок внутри деревянного корпуса, с размещенными снаружи циферблатами. Затем каталонский мыслитель Раймунд Луллий, создавший логическую машину с бумажных кругов выстроенных в троичной логике и разделенных линиями на специальные отделения.

Механизм Лео да Винчи 4

Следующий шаг сделал всем знакомый Лео да Винчи. В своих дневниках он описал 13-разрядное устройство с десятью кольцами для суммирования. Аналогичный механизм был разработан позднее, лишь в XX-веке по чертежам Лео.

Считающие часы Вильгельма Шиккарда 5

Тюбингенский профессор Вильгельм Шиккард создал вычислительное устройство с зубчатыми шестеренками, названное - считающие часы. Они позволяли делать сложения и вычитание шестирязрадных 10-ных чисел. Еще механизм делал умножение.

Логарифмическая счетная линейка 6

Математики Уильям Отред и Ричард Деламейн разрабатывают логарифмическую счетную линейку, способную производить самые разные вычислительные операции: сложение, вычитание, умножение, деление, возведение в степень, вычисление корней квадрата и куба, вычисление логарифма, тригонометрические и гиперболический вычисления. Не правда ли, здорово?

Арифметическая Паскалина 7

Француз Блез Паскаль создает арифметическую машину называемую - Паскалина. Она представляла собой механическое устройство в виде ящика с шестеренками, для вычитания и суммирования пятиразрядных 10-ных чисел.

Арифмометр Лейбница 8

Математик и мыслитель Готфрид Вильгельм Лейбниц создал арифмометр, позволяющий делать четыре основные математические операции. Затем Лейбниц описал двоичную систему счисления, обнаружив что при записи групп чисел друг под другом, нули и единицы в вертикальных столбцах повторяются. Лейбниц произвел вычисления и понял, что двоичный код можно применить в механике, но технические возможности его времени не позволяют создать устройство.

Основа матанализа 9

Математик Исаак Ньютон положил основу математического анализа. На основе работ Лейбница математик Христиан Людвиг Герстен создается арифметическую машину для расчета частного и числа последовательных операций сложений во время умножения. Устройство также позволяло контролировать правильность ввода чисел.

Идея разностной машины 10

Иоганн Мюллер, будучи военным инженером, выдвинул идею «разностной машины» - арифмометра для табулирования логарифмов, во время улучшения механического калькулятора на основе ступенчатых валиков Лейбница.

Ткацкий станок на перфокартах 11

Французский изобретатель Жозеф Мари Жаккар создает ткацкий станок, управление которого производилось с помощью перфокарт. Еще один француз Тома де Кольмар начал самый первый промышленный выпуск арифмометров.

Разностная машина Бэббиджа 12

Чарльз Бэббидж придумал первую разностную машину - арифмометр для автоматического построения математических таблиц. Однако, собрать механизм Бэббидж не смог, но это сделал его сын, после смерти отца.

На основе работ Чарльза Бэббиджа братья Шутц - Георг и Эдвард, создают первую разностную машину.

Механизм троичного счисления 13

Томасом Фаулером был построен троичный счетный механизм с троичной системой счисления.

Арифмометр Чебышева 14

Русский математик Чебышев создал - арифмометр Чебышева, позволяющий делать суммирование с передачей десятков, а также умножать и делить числа.

Система переписи населения 15

Германом Холлеритом разработана электронная табулирующая система, использующаяся для переписи населения США.

Машина дифференциальных уравнений 16

По работам русского ученого Крылова, была создана машина обыкновенных дифференциальных уравнений.

Аналоговый компьютер Буша 17

Американский ученый Вэнивар Буш разработал в Массачусетском технологическом институте механический аналоговый компьютер.

Первый компьютер Конрада Цузе 18

Немецкий инженер Конрад Цузе, в соавторстве с Гельмутом Шрайером, создал механизм под названием - Z1, который представлял программируемый цифровой механизм. Первая пробная версия нигде не использовалась. Вскоре была создана машина Z2, а затем Z3 - ставшая первой вычислительной машиной с свойствами современного компьютера.

Компьютер Атанасова - Берри 19

Американский математик болгарского происхождения Джон Атанасов, вместе со своим аспирантом Клиффордом Берри, разработали первый электронный цифровой компьютер под названием ABC (Atanasoff-Berry Computer - ABC).

Колосс в борьбе против фашистов 20

В военных целях, для расшифровки секретных кодов фашистской Германии, был разработана британская машина Colossus.

Марк 1 для ВМС США 21

Американская группа инженеров под руководством Говарда Эйкена разработала первую американскую вычислительную машину - Марк 1. Машина стала использоваться для расчетов в Военно-морских силах США.

Первый язык программирования 22

Конрадом Цузе была разработана новая и более быстрая версия компьютера Z4. Кроме этого, был создан первый язык программирования Планкалкюль.

ЭВМ Лебедева 23

Создана первая советская электронная вычислительная машина группой инженеров под руководством советского ученого Лебедева.

Транзисторный усилитель 24

Ученые из компании Bell Labs: Уильям Шокли, Уолтер Браттейн и Джон Бардин создали транзисторный усилитель, который помог уменьшить размеры компьютеров и прекратить использовать электронные лампы.

Первый компьютер на транзисторах 25

Американская компания NCR создала самый первый компьютер на транзисторах.

ENIAC 26

Разработана первая электронная цифровая вычислительная машина ЭНИАК (ENIAC) в компании IBM

Компьютеры System 360 27

Компания IBM создало компьютеры System 360, которые были примером стандарта для производителей компьютерного оборудования и совместимости с оборудованием других компьютеров.

Микропроцессоры Intel 28

Роберт Нойс и Гордон Мур создают компанию Intel и занимаются созданием микрочипов памяти, а впоследствии микропроцессорами.

Базовый комплект компьютера 29

Дуглас Энгельбарт создает систему, в составе которой: цифробуквенная клавиатура, мышка и программа для вывода экран данных.

Создатель компьютерной мыши 30

Изобретатель Дуглас Энгельбарт, который также впоследствии придумал графический интерфейс, гипертекст, текстовый редактор, групповые онлайн-конференци, создал компьютерную мышь.

Отец будущего Интернета 31

Министерство обороны США создает сеть ARPAnet - будущий Internet.

Гибкий магнитный диск 32

Создан накопитель на гибком магнитном диске размером 200 мм, 133 мм, 90 мм.

Первый микропроцессор 33

Появился первый микропроцессор на интегральной схеме - Intel 4004, имеющий разрядность 4 бита. Процессор применялся в калькуляторах и светофорах. Вскоре появились 8-разрядные Intel 8008, Intel 8080, Zilog Z80, MOS 6502, Motorola 6800, а также 16-разрядные Intel 8086 и Intel 8088, которые уже применялись в персональных компьютерах.

Как выглядел первый компьютер 34

Самые первые компьютеры были огромных размеров и низки в производительности. Чтобы разместить один компьютер, требовалась отдельная и большая комната. Компьютеры требовали очень много электричества для своей работы, что было очень дорого. Кроме этого, необходим был целый штат подготовленных специалистов, чтобы обслуживать и работать с компьютером.

Первое применение компьютера 35

Стоимость компьютеров была очень огромной, массовым спросом они изначально не пользовались и купить их могли только крупные компании. Первые компьютеры создавались для математических вычислений. Кроме этого, они хранили и обрабатывали данные, в не очень больших объемах. Изначально компьютеры использовали лишь научно-исследовательские институты, впоследствии начали применять крупные компании и банки.

В заключение

С тех пор, компьютеры завоевали мир, однако даже наше старшее поколение не могли использовать их для своего обучения, не говоря уже о развлечениях. Но стремительный процесс развития компьютерной техники, положенный общими усилиями множества изобретателей, сделал компьютер доступным почти для всех. А каким первым был ваш компьютер?