Основы общей теории преобразования частоты. Частотный преобразователь - виды, принцип действия, схемы подключения Смотреть что такое "преобразование частоты" в других словарях

8.8.1. Принцип преобразования частоты

Преобразование частоты сигнала – это процесс, который обеспечивает линейный перенос спектра сигнала на оси частот без изменения его структуры. Огибающая сигнала и его начальная фаза при этом не изменяются. Другими словами, преобразование частоты не искажает закон изменения амплитуды, частоты или фазы модулированных колебаний.

Как видно из определения, преобразование частоты сопровождается появлением новых составляющих спектра, т.е. приводит к обогащению спектра сигнала. Поэтому такой процесс можно реализовать только с использованием нелинейного или параметрического устройств, обеспечивающих умножение преобразуемого сигнала на вспомогательное гармоническое колебание с последующим выделением необходимой области частот.

Действительно, если на вход умножителя подать два сигнала:

то на выходе получим сигнал суммарной и разностной частот:

где – коэффициент передачи умножителя.

Выходной фильтр, настроенный, например, на разностную частоту, выделит составляющую разностной (промежуточной) частоты. Такое нелинейное устройство называют смесителем , а источник гармонического колебания – гетеродином .

Структурная схема преобразователя частоты представлена на рис. 8.41.

Рис. 8.41. Структурная схема преобразователя частоты

Преобразование частоты применяется в супергетеродинных приемниках для получения сигнала с промежуточной частотой. Величина промежуточной частоты должна быть таковой, чтобы без особых затруднений достигалось большое усиление при высокой избирательности приемника. В радиовещательных приемниках длинных, средних и коротких волн , а в приемниках с частотной модуляцией (в метровом диапазоне волн) – . Преобразование частоты сигнала используется также в приемниках радиолокационных станций, в измерительной технике (анализаторах спектра, генераторах и др.).

8.8.2. Схемы преобразователей частоты

Как было сказано выше, процесс преобразования частоты реализуется путем умножения преобразуемого сигнала на вспомогательное гармоническое колебание с последующим выделением необходимой области частот. Это можно сделать двумя способами, которые положены в основу построения практических схем преобразователей частоты:

1. Сумма двух напряжений (полезного сигнала и сигнала гетеродина) подается на нелинейный элемент с последующим выделением необходимых составляющих спектра тока. В качестве нелинейных элементов используются диоды, транзисторы и другие элементы с нелинейной характеристикой.

2. Напряжение гетеродина используется для изменения какого-либо параметра смесителя (крутизны ВАХ транзистора, реактивного параметра цепи). Полезный сигнал, подаваемый на вход такого смесителя, преобразуется с соответствующим обогащением спектра.


Для выяснения основных особенностей процесса преобразования частоты рассмотрим некоторые схемы преобразователей частоты.

а. Преобразователи частоты на диодах

Схема одноконтурного преобразователя частоты на диоде представлена на рис. 8.42.

Рис. 8.42. Одноконтурный преобразователь частоты на диоде

На вход преобразователя поступают два сигнала:

модулированный узкополосный сигнал , несущая частота которого должна быть перенесена, скажем, в область более низких частот;

сигнал гетеродина с постоянной амплитудой, частотой и начальной фазой.

Таким образом, на нелинейный элемент подается напряжение

Аппроксимируем ВАХ диода полиномом второй степени

Тогда ток диода можно представить следующим образом:

Слагаемые, содержащие только , , , , соответствуют составляющим в спектре тока диода, имеющим частоты , , и . Следовательно, они с точки зрения преобразования частоты, интереса не представляют. Основное значение имеет последнее слагаемое. Именно оно свидетельствует о наличии в спектре тока составляющих с преобразованными частотами и :

Составляющая с частотой соответствует сдвигу спектра сигнала в область низких частот, а составляющая с частотой – в область высоких частот.

Выходное напряжение с необходимой частотой формируется с помощью фильтра (колебательного контура) на выходе преобразователя, настроенного на соответствующую частоту. Фильтр должен выделить одну составляющую из семи. Полагая, что фильтр настроен на разностную (промежуточную) частоту , получим напряжение на выходе преобразователя, равное

При или расстройка частот , и , весьма мала. При этом составляющие с частотами сигнала или гетеродина не будут отфильтрованы избирательной системой. Нежелательно также применение этой системы при решении задачи преобразования частоты в диапазоне акустических частот. В этом случае целесообразно использовать балансные схемы, которые обеспечивают самоликвидацию (компенсацию) ненужных составляющих. На рис. 8.43,а и рис. 8.43,б приведены схемы таких преобразователей на диодах.

Рис. 8.43. Балансные преобразователи частоты

В схеме рис. 8.43,а выходное напряжение равно

При получении выражения для учтено, что напряжение сигнала подается на диоды схем в противофазе, а напряжение гетеродина – в фазе.

Подставляя выражения для и в формулу (8.5), получаем

Отсюда видно, что на выходе балансного преобразователя рис. 8.43,а отсутствуют составляющие с частотами, равными 0, , , , что упрощает решение задачи получения выходного сигнала необходимой частоты. Тем не менее, к выходу такого преобразователя также необходимо подключать избирательную систему с целью фильтрации сигнала с требуемой частотой.

Балансный преобразователь рис. 8.43,б представляет собой схему, совмещающую два балансных преобразователя. На диоды различных ветвей подаются напряжения сигнала и гетеродина с различными фазами. Работа такого преобразователя поясняется следующими формулами:

Подставляя выражения для , , и в формулу (8.6), получаем

На выходе преобразователя рис. 8.44,б отсутствует составляющая с частотой сигнала (составляющие с частотами 0, , , также отсутствуют). Фильтр на выходе такого преобразователя должен выделить одну составляющую из двух.

б. Транзисторные преобразователи частоты

В приемных каналах радиотехнических систем широко используются преобразователи частоты на транзисторах. При этом различают схемы преобразователей, в которых функции смесителя и гетеродина совмещены, и схемы преобразователей с подачей сигнала гетеродина извне. Более стабильную работу обеспечивает последний класс преобразователей.

По способу включения транзисторов различают:

1. Преобразователи с включением транзистора по схеме с общим эмиттером и по схеме с общей базой.

Преобразователи с общим эмиттером используются чаще, т.к. имеют лучшие шумовые характеристики и больший коэффициент усиления по напряжению. Напряжение гетеродина может быть подано в цепь базы или в цепь эмиттера. В первом случае достигается больший коэффициент усиления, во втором случае – лучшая стабильность коэффициента усиления и хорошая развязка между сигнальным и гетеродинным контурами.

2. Преобразователи на усилителях с каскодным включением транзисторов.

3. Преобразователи на дифференциальном усилителе.

4. Преобразователи на полевых транзисторах (с одним и двумя затворами).

Основные свойства и характеристики последних трех групп преобразователей определяются свойствами усилителей, на основе которых они построены.

На рис. 8.44 приведены схемы преобразователей частоты на плоскостных транзисторах.

В схеме рис. 8.44,а напряжение сигнала подается в цепь базы транзистора, напряжение гетеродина – на эмиттер. Контур в цепи коллектора настроен на промежуточную частоту. Сопротивления и обеспечивают необходимый режим работы усилителя (положение рабочей точки), сопротивление и емкость – термостабилизацию положения рабочей точки. Преобразование частоты осуществляется за счет изменения с частотой сигнала гетеродина коэффициента передачи усилительного каскада (крутизны ВАХ транзистора).

Рис. 8.44. Схемы преобразователей частоты на плоскостных транзисторах

Транзисторный преобразователь частоты, изображенный на рис. 8.44,б, построен с использованием дифференциального усилителя. На его вход подается преобразуемый сигнал, а на базу транзистора генератора стабильного тока подается сигнал гетеродина. Коэффициент усиления и коэффициент шума таких преобразователей примерно равны соответствующим коэффициентам усилительного каскада.

Схемы преобразователей частоты на полевых транзисторах приведены на рис. 8.45,а – схема с совмещенным гетеродином и рис. 8.45,б – схема с использованием полевого транзистора с двумя изолированными затворами.

Рис. 8.45. Схемы преобразователей частоты на полевых транзисторах

На рис. 8.45,а полевой транзистор с затвором в виде p-n -перехода выполняет роль смесителя и гетеродина одновременно. Сигнал поступает на затвор транзистора. Напряжение гетеродина с части гетеродинного контура подается в цепь истока транзистора. Необходимый режим транзистора обеспечивается соответствующим выбором рабочей точки с помощью цепи автоматического смещения . Резистор в цепи затвора обеспечивает стекание зарядов, скапливающихся на затворе. Нагрузка преобразователя – полосовой фильтр, настроенный на необходимую комбинационную частоту стокового тока. Так как входное и выходное сопротивления полевого транзистора довольно велики, то входной контур к затвору и контур полосового фильтра к стоку подключаются полностью.

В схеме транзисторного преобразователя частоты на полевом транзисторе с двумя изолированными затворами (рис. 8.45,б) оба затвора используются в качестве управляющих электродов. По существу транзистор работает под воздействием суммы двух напряжений. Напряжение создается преобразуемым сигналом, подаваемым на первый затвор, а напряжение – сигналом гетеродина, подаваемым на второй затвор. Колебательный контур, настроенный на разностную частоту, подключен к стоку транзистора. Достоинством этой схемы является незначительная емкостная связь между цепью подачи преобразуемого сигнала и контуром сигнала гетеродина. При наличии такой связи возможен захват сигналом частоты колебаний гетеродина. При этом частота сигнала гетеродина становится равной частоте преобразуемого сигнала, вследствие чего преобразования частоты происходить не будет.

Преобразование частоты можно осуществить также с помощью параметрических цепей. В таких цепях напряжение гетеродина подается на нелинейную емкость (варикап), величина которой изменяется по закону гетеродинного напряжения.

ЗАКЛЮЧЕНИЕ

Современное состояние радиотехники характеризуется интенсивным развитием методов и средств обработки сигналов, широким использованием достижений цифровых и информационных технологий. В то же время нельзя абсолютизировать изменчивость базовых фрагментов общей теории радиотехники, положенных в основу методов решения задач анализа и синтеза современных радиотехнических и информационных систем. Как знания и свободная ориентация во множестве математических аксиом позволяют приходить к новым выводам и результатам, так и знания основополагающих концепций в области моделирования сигналов, методов и технических средств их обработки позволяют легко разобраться в новых, пусть даже на первый взгляд очень сложных технологиях. Только при наличии таких знаний исследователь или проектировщик может рассчитывать на практическую результативность известного принципа "know-how" (знаю, как).

Вне рамок данной книги остались многие вопросы, непосредственно связанные с "детерминированной" радиотехникой. Прежде всего это вопросы генерирования сигналов, дискретной и цифровой фильтрации, методов анализа и построения параметрических и оптоэлектронных устройств. Особого внимания и отдельного обсуждения заслуживают проблемы статистической радиотехники, решение которых немыслимо без широкого кругозора в области методов анализа случайных сигналов и их преобразований, методов решения классических задач оптимальной обработки сигналов при их обнаружении и измерении.

В последующем планируется издание учебного пособия, посвященного рассмотрению этих проблем с учетом новейших теоретических и практических результатов.

ЛИТЕРАТУРА

1. Гоноровский, И. С. Радиотехнические цепи и сигналы: учебник для вузов. – М. : Радио и связь, 1986.

2. Баскаков, С. И. Радиотехнические цепи и сигналы: учебник для вузов. – М. : Высш. шк., 2000.

3. Радиотехнические цепи и сигналы/ Д.В.Васильев, М.Р.Витоль, Ю.Н. Горшенков и др.;/ Под ред. А.К.Самойло – М. Радио и связь, 1990.

4. Нефедов В.И. Основы радиоэлектроники и связи: Учебник для вузов. – М.: Высш. шк., 2002.

5. Сергиенко А.Б. Цифровая обработка сигналов. – СПб.: 2003.

6. Иванов М.Т., Сергиенко А.Б., Ушаков В.Н. Теоретические основы радиотехники. Учеб. пособие для вузов. – М.: Высш. шк., 2002.

7. Манаев Е.И. Основы радиоэлектроники. – М.: Радио и связь, 1990.

8. Быстров Ю.А., Мироненко И.Г. Электронные цепи и устройства. – М.: Высш. шк., 1989.

9. Каяцкас А.А. Основы радиоэлектроники. – М:. Высш. шк., 1988.

10. Бронштейн И.Н., Семендяев К.А. Справочник по математике для инженеров и учащихся ВТУЗ. – М.: Наука. Глав. ред. физ.-мат. литературы, 1986.

11. Левин Б.Р. Теоретические основы статистической радиотехники. – М.: Радио и связь, 1989.

12. Гусев В.Г., Гусев Ю.М. Электроника. М.: Высш. шк., 1991.

ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Красноярский Государственный Технический Университет

Лабораторная работа по РТЦиС №4

Преобразование частоты.

выполнил:

студент гр. Р53-4: Титов Д. С.

проверил:

Кашкин В. Б.

Красноярск 2005

Цель работы

Изучение основных закономерностей преобразования частоты. В работе снимается зависимость коэфициента преобразования от напряжения смещения, исследуются спектры сигналов на выходе преобразователя при большой и малой амплитудах гетеродина.

Домашнее задание.

Схема преобразователя частоты

Зависимость дифференциальной крутизны от входного напряжения.

Известны: частота гетеродина fг, частота фильтра промежуточной частоты fф. Определить частоты сигнала, при которых напряжение на выходе преобразователя достигает максимума.

А) Если амплитуда гетеродина мала, то преобразователь работает в квадратичном режиме, следовательно

Б) Если амплитуда гетеродина велика, то режим уже не будет квадратичным.

где m и n некоторые целые положительные числа.

В током случае будет сильное искажение сигнала на выходе преобразователя.

Зависимость Uвых(Ub0) в режиме преобразования частоты т.е. при одновременной подаче на вход Uс и Uг и fс=|fг±fф|.

Эта зависимость имеет такой же нелинейный характер, как входная характеристика транзистора.

Экспериментальная часть

Снимем зависимость напряжения на выходе преобразователя от напряжения смещения в режиме прямого прохождения при Uc=10 мВ и fc=fп и выключенном гетеродине.

Расчетная промежуточная частота фильтра f=121 кГц (С=2200пФ L=780 мкГн).

Экспериментально найденые частота гетеродина f=261 кГц, промежуточная частота фильтра f=104 кГц.

Частоту сигнала настраиваем по максимуму напряжения на выходе преобразователя.

Полученая характеристика явно нелинейная т.к. входная характеристика транзистора нелинейна.

Выберем рабочую точку на середине линейного участка зависимости Uвых(Ub0). Ub0=0,5 В.

Снимем и построим зависимость напряжения на на выходе преобразователя частоты сигнала при Uc=10 мВ, занесем в таблицу значения напряжения на выходе преобразователя в максимумах и частоты максимумов.(Гетеродин включен, синхронизация выключена)

При малой амплитуде гетеродина Аг=10 мВ.

При большой амплитуде гетеродина Аг=250 мВ.

Осциллограмма АМ-напряжения на входе преобразователя.

Осциллограммы АМ-напряжения на выходе преобразователя при большой амплитуде гетеродина и смещении Ub0=0,5 В, на частоте сигнала

1) fс=fг+fп fс=365 кГц

2) fс=fг-fп fс=158 кГц

3) fс=3fг+fп fс=840 кГц

4) fс=3fг-fп fс=630 кГц

Снимем зависимость Uвых(Ub0) при большой амплитуде гетеродина.

Из полученых данных расчитаем и построим график зависимости коэффициента преобразования от напряжения смещения.

Вывод : в ходе лабораторной работы были исследованы процессы, происходящие при преобразовании частоты АМ-сигнала.

Была снята зависимость напряжения на выходе преобразователя от напряжения смещения в режиме прямого прохождения, эта зависимость нелинейна.

Были измерены частоты и амплитуды максимумов при малой и большой амплитуде гетеродина. Выяснили, что на выходе преобразователя частоты сигнал имеет сложный спектр с максимумами на нескольких частотах

Были получены осциллограммы сигналов на выходе преобразователя при разных частотах входного АМ-сигнала. Оказалось, что сигналы на выходе маленько искажены.

Ротор любого электродвигателя приводится в движение под действием сил, вызванных вращающимся электромагнитным полем внутри обмотки статора. Скорость его оборотов обычно определяется промышленной частотой электрической сети.

Ее стандартная величина в 50 герц подразумевает совершение пятидесяти периодов колебаний в течение одной секунды. За одну минуту их число возрастает в 60 раз и составляет 50х60=3000 оборотов. Такое же число раз проворачивается ротор под воздействием приложенного электромагнитного поля.

Если изменять величину частоты сети, приложенной к статору, то можно регулировать скорость вращения ротора и подключенного к нему привода. Этот принцип заложен в основу управления электродвигателями.

Виды частотных преобразователей

По конструкции частотные преобразователи бывают:

1. индукционного типа;

2. электронные.

Асинхронные электродвигатели, выполненные и запущенные в режим генератора, являются представителями первого вида. Они при работе обладают низким КПД и отмечаются маленькой эффективностью. Поэтому они не нашли широкого применения в производстве и используются крайне редко.

Способ электронного преобразования частоты позволяет плавно регулировать обороты как асинхронных, так и синхронных машин. При этом может быть реализован один из двух принципов управления:

1. по заранее заданной характеристике зависимости скорости вращения от частоты (V/f);

2. метод векторного управления.

Первый способ является наиболее простым и менее совершенным, а второй используется для точного регулирования скоростей вращения ответственного промышленного оборудования.

Особенности векторного управления частотным преобразованием

Отличием этого способа является взаимодействие, влияние устройства управления преобразователя на «пространственный вектор» магнитного потока, вращающийся с частотой поля ротора.

Алгоритмы для работы преобразователей по этому принципу создаются двумя способами:

1. бессенсорного управления;

2. потокорегулирования.

Первый метод основан на назначении определенной зависимости чередования последовательностей инвертора для заранее подготовленных алгоритмов. При этом амплитуда и частота напряжения на выходе преобразователя регулируются по скольжению и нагрузочному току, но без использования обратных связей по скорости вращения ротора.

Этим способом пользуются при управлении несколькими электродвигателями, подключенными параллельно к преобразователю частоты. Потокорегулирование подразумевает контроль рабочих токов внутри двигателя с разложением их на активную и реактивную составляющие и внесение корректив в работу преобразователя для выставления амплитуды, частоты и угла для векторов выходного напряжения.

Это позволяет повысить точность работы двигателя и увеличить границы его регулирования. Применение потокорегулирования расширяет возможности приводов, работающих на малых оборотах с большими динамическими нагрузками, такими как подъемные крановые устройства или намоточные промышленные станки.

Использование векторной технологии позволяет применять динамическую регулировку вращающихся моментов к .

Схема замещения

Принципиальную упрощенную электрическую схему асинхронного двигателя можно представить следующим видом.


На обмотки статора, обладающие активным R1 и индуктивным X1 сопротивлениями, приложено напряжение u1. Оно, преодолевая сопротивление воздушного зазора Хв, трансформируется в обмотку ротора, вызывая в ней ток, который преодолевает ее сопротивление.

Векторная диаграмма схемы замещения

Ее построение помогает понять происходящие процессы внутри асинхронного двигателя.


Энергия тока статора разделяется на две части:

    iµ - потокообразующую долю;

    iw - моментообразующую составляющую.

При этом ротор обладает активным сопротивлением R2/s, зависящим от скольжения.

Для бессенсорного управления измеряются:

    напряжение u1;

    ток i1.

По их значениям рассчитывают:

    iµ - потокообразующую составляющую тока;

    iw - моментообразующую величину.

В алгоритм расчета уже заложили электронную эквивалентную схему асинхронного двигателя с регуляторами тока, в которой учтены условия насыщения электромагнитного поля и потерь магнитной энергии в стали.

Обе этих составляющих векторов тока, отличающиеся по углу и амплитуде, вращаются совместно с системой координат ротора и пересчитываются в стационарную систему ориентации по статору.

По этому принципу подстраиваются параметры частотного преобразователя под нагрузку асинхронного двигателя.

Принцип работы частотного преобразователя

В основу этого устройства, которое еще называют инвертором, заложено двойное изменение формы сигнала питающей электрической сети.


Вначале промышленное напряжение подается на силовой выпрямительный блок с мощными диодами, которые убирают синусоидальные гармоники, но оставляют пульсации сигнала. Для их ликвидации предусмотрена батарея конденсаторов с индуктивностью (LC-фильтр), обеспечивающая стабильную, сглаженную форму выпрямленному напряжению.

Затем сигнал поступает на вход преобразователя частоты, который представляет собой мостовую трехфазную схему из шести серии IGBT или MOSFET с диодами защиты от пробоя напряжений обратной полярности. Используемые ранее для этих целей тиристоры не обладают достаточным быстродействием и работают с большими помехами.

Для включения режима «торможения» двигателя в схему может быть установлен управляемый транзистор с мощным резистором, рассеивающим энергию. Такой прием позволяет убирать генерируемое двигателем напряжение для защиты конденсаторов фильтра от перезарядки и выхода из строя.

Способ векторного управления частотой преобразователя позволяет создавать схемы, осуществляющие автоматическое регулирование сигнала системами САР. Для этого используется система управления:

1. амплитудная;

2. ШИМ (широтного импульсного моделирования).

Метод амплитудного регулирования основан на изменении входного напряжения, а ШИМ - алгоритма переключений силовых транзисторов при неизменном напряжении входа.


При ШИМ регулировании создается период модуляции сигнала, когда обмотка статора подключается по строгой очередности к положительным и отрицательным выводам выпрямителя.

Поскольку частота такта генератора довольно высокая, то в обмотке электродвигателя, обладающего индуктивным сопротивлением, происходит их сглаживание до синусоиды нормального вида.


Способы ШИМ управления позволяют максимально исключить потери энергии и обеспечивают высокий КПД преобразования за счет одновременного управления частотой и амплитудой. Они стали доступны благодаря развитию технологий управления силовыми запираемыми тиристорами серии GTO или биполярных марок транзисторов IGBT, обладающих изолированным затвором.

Принципы их включения для управления трехфазным двигателем показаны на картинке.


Каждый из шести IGBT-транзисторов подключается по встречно-параллельной схеме к своему диоду обратного тока. При этом через силовую цепь каждого транзистора проходит активный ток асинхронного двигателя, а его реактивная составляющая направляется через диоды.

Для ликвидации влияния внешних электрических помех на работу инвертора и двигателя в конструкцию схемы преобразователя частоты может включаться , ликвидирующий:

    радиопомехи;

    наводимые работающим оборудованием электрические разряды.

Их возникновение сигнализирует контроллер, а для уменьшения воздействия используется экранированная проводка между двигателем и выходными клеммами инвертора.

С целью улучшения точности работы асинхронных двигателей в схему управления частотных преобразователей включают:

    ввода связи с расширенными возможностями интерфейса;

    встроенный контроллер;

    карту памяти;

    программное обеспечение;

    информационный Led-дисплей, отображающий основные выходные параметры;

    тормозной прерыватель и встроенный ЭМС фильтр;

    систему охлаждения схемы, основанную на обдуве вентиляторами повышенного ресурса;

    функцию прогрева двигателя посредством постоянного тока и некоторые другие возможности.

Эксплуатационные схемы подключения

Частотные преобразователи создаются для работы с однофазными или трехфазными сетями. Однако, если есть промышленные источники постоянного тока с напряжением 220 вольт, то от них тоже можно запитывать инверторы.


Трехфазные модели рассчитываются на напряжение сети 380 вольт и выдают его на электродвигатель. Однофазные же инверторы питаются от 220 вольт и на выходе выдают три разнесенных по времени фазы.

Схема подключения частотного преобразователя к двигателю может быть выполнена по схемам:

    звезды;

    треугольника.

Обмотки двигателя собираются в «звезду» для преобразователя, запитанного от трехфазной сети 380 вольт.


По схеме «треугольник» собирают обмотки двигателя, когда питающий его преобразователь подключен к однофазной сети 220 вольт.


Выбирая способ подключения электрического двигателя к преобразователю частоты надо обращать внимание на соотношение мощностей, которые может создать работающий двигатель на всех режимах, включая медленный, нагруженный запуск, с возможностями инвертора.

Нельзя постоянно перегружать частотный преобразователь, а небольшой запас его выходной мощности обеспечит ему длительную и безаварийную работу.

При одновременном действии сигнала и гетеродина на нелинейный элемент, в выходной цепи появляются токи комбинационных частот вида , где m и n- целые числа натурального ряда и определяют нелинейность преобразовательного элемента по отношению к сигналу и гетеродину. Если преобразователь по отношению к сигналу является линейным, то m=1, если гетеродин генерирует гармонический сигнал, то n=1.

На всех трех входах преобразователя частоты подключены селективные системы, настроенные соответственно в резонанс на входе с частотой сигнала. При этом к зажимам 3-3 подключается гетеродинная система (задаем n=1) , к зажимам 2-2 подключается селективная система в виде, например, простого колебательного контура.

Основными уравнениями, которые описывают работу 6-полюсника, являются уравнения вида:

(1)

(2)

В выражения (1) и (2) не входит время, так как 6-полюсник мы считаем безинерционным. При выводе уравнений, описывающих процесс преобразования частоты, будем считать, что напряжение сигнала U c имеет порядок десяток – сотен мкВ, что позволяет считать преобразователь частоты линейным. В то же время напряжение с частотой гетеродина U г имеет порядок десятых долей и единиц В. Поэтому, ни U c , ни U пр не вызывают изменение параметров нелинейного элемента, это делает U г.Это позволяет функции f 1 и f 2 разложить в ряд Тейлора по степеням малых переменных U c и U пр, то есть ограничившись учетом членов разложения с U c и U пр в первой степени.

(3)

Производные, являющиеся коэффициентами рядов определяются при и , то есть при действии только напряжения гетеродина;

при

Физический смысл:

Это входной ток при действии U г.

- входная проводимость.

- проводимость обратного преобразования.

Выходной ток при действии гетеродина, при отсутствии сигнала.

- крутизна.

- выходная проводимость.

Поскольку гетеродинное напряжение считается гармоническим, например, косинусоидальным: , то крутизна S(t), как периодическая функция времени, может быть представлена в виде ряда Фурье:

После подстановки в (3) и (4) получаем уравнение прямого и обратного преобразования:

а) прямого преобразования ,

где I пр - ток промежуточной частоты;



б) обратного преобразования .

Параметры преобразователя.

1. Крутизна преобразователя:

(к. з. на выходе)

Введение

В радиотехнике часто требуется осуществить сдвиг спектра по оси частот на определённое постоянное значение при сохранение структуры сигнала. Такой сдвиг называется преобразованием частоты. Это необходимо в радиоприёмниках для того, чтобы осуществить более качественную полосовую фильтрацию т.к. на низких частотах это сделать более эффективно. В радиопередатчиках это нужно для модуляции.

Данную задачу решает преобразователь частоты. Преобразователь частоты - это устройство, состоящее из смесителя и генератора, называемое гетеродином. Назначение преобразователя состоит в том, чтобы перенести спектр принимаемого сигнала на более низкую промежуточную частоту .

Основными параметрами преобразователя частоты являются: частота гетеродина, максимальная частота сигнала, напряжение питания, потребляемый ток.

Принцип преобразования частоты

Модулированные (или немодулированные) высокочастотные колебания можно преобразовать в колебание другой частоты таким образом, что амплитудные и фазовые соотношения между составляющими спектра сохраняются.

Для преобразования частоты требуется вспомогательное напряжение, для получения которого требуется генератор высокочастотных колебаний, называемый гетеродином.

Преобразование частоты можно осуществить одним из двух способов:

Создать биения двух напряжений и подать их на нелинейный элемент - диод, транзистор или любое другое устройство с нелинейной характеристикой, для того чтобы выделить из них составляющие суммарной и разностной частоты. Этот способ называют аддитивным смешиванием.

Подать преобразуемое высокочастотное колебание на элемент, коэффициент передачи которого изменяется под воздействием гетеродинного напряжения, и выделить из выходного колебания, составляющие суммарной или разностной частоты. Этот способ принято называть мультипликативным смешиванием .

Устройства, исполняющие данную задачу, называю преобразователями частоты.

Преобразователь частоты состоит из смесителя и генератора, называемого гетеродином. Обычно в профессиональных радиоприёмниках в качестве гетеродинов применяются синтезаторы частот. При этом обеспечивается кварцевая стабильность частоты, низкий уровень фазового шума и возможность перенастройки.

Смеситель - это устройство, имеющее два входа. На один из них поступает напряжение сигнала, на другой - гетеродина. На выходе смесителя имеется спектр частот, среди которых разностная частота. Существует два типа смешивания: аддитивное и мультипликативное.

Мультипликативное смешивание

При мультипликативном смешивании напряжение сигнала перемножается с напряжением гетеродина . Функциональная схема данного принципа приведена на рис. 1

Для получения колебаний разностной частоты достаточно перемножить напряжения сигнала и гетеродина.

Оригинал данного изображения достаточно громоздкий, поэтому мы лишь покажем график функции выходного напряжения.


Таким образом, задача состоит в том, чтобы сделать перемножитель напряжений, причём такой, чтобы в его выходном спектре содержалось минимальное число побочных составляющих.